Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 930849, 9 pages
http://dx.doi.org/10.1100/2012/930849
Review Article

Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards

1Waili Foundation for Science, Queens, NY 11418, USA
2Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Received 22 July 2012; Accepted 28 August 2012

Academic Editors: N. Ercal, A. Scozzafava, D. X. Tan, and L. A. Videla

Copyright © 2012 Noori Al-Waili et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Greenwood, “Sixty years on: antimicrobial drug resistance comes of age,” The Lancet, vol. 346, supplement 1, p. S1, 1995. View at Google Scholar · View at Scopus
  2. G. A. Ankra-Badu, “Sickle cell leg ulcers in Ghana,” East African Medical Journal, vol. 69, no. 7, pp. 366–369, 1992. View at Google Scholar · View at Scopus
  3. C. L. Obi, E. O. Ugoji, S. A. Edun, S. F. Lawal, and C. E. Anyiwo, “The antibacterial effect of honey on diarrhoea causing bacterial agents isolated in Lagos, Nigeria,” African Journal of Medicine and Medical Sciences, vol. 23, no. 3, pp. 257–260, 1994. View at Google Scholar · View at Scopus
  4. P. J. Imperato and D. Traoré, “Traditional beliefs about measles and its treatment among the bambara of Mali,” Tropical and Geographical Medicine, vol. 21, no. 1, pp. 62–67, 1969. View at Google Scholar · View at Scopus
  5. L. Chen, A. Mehta, M. Berenbaum, A. R. Zangerl, and N. J. Engeseth, “Honeys from different floral sources as inhibitors of enzymatic browning in fruit and vegetable homogenates,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 4997–5000, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Mundo, O. I. Padilla-Zakour, and R. W. Worobo, “Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys,” International Journal of Food Microbiology, vol. 97, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. S. Al-Waili and K. Y. Saloom, “Effects of topical honey on post-operative wound infections due to gram positive and gram negative bacteria following caesarean sections and hysterectomies,” European Journal of Medical Research, vol. 4, no. 3, pp. 126–130, 1999. View at Google Scholar · View at Scopus
  8. N. S. Al-Waili, K. Salom, G. Butler, and A. A. Al Ghamdi, “Honey and microbial infections: a review supporting the use of honey for microbial control,” Journal of Medicinal Food, vol. 14, no. 10, pp. 1079–1096, 2011. View at Google Scholar
  9. N. S. Al-Waili, K. Salom, and A. A. Al-Ghamdi, “Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice,” The Scientific World Journal, vol. 11, pp. 766–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. H. Othman, “Honey and cancer: sustainable inverse relationship particularly for developing nations-a review,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 410406, p. 10, 2012. View at Publisher · View at Google Scholar
  11. J. Parmar, P. Hunjan, A. Brown, and M. Telfer, “Honey dressing use for the management of split thickness skin graft donor sites: a technical note,” The British Journal of Oral & Maxillofacial Surgery. In press. View at Publisher · View at Google Scholar
  12. S. Kelly, K. Heaton, and J. Hoogewerff, “Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis,” Trends in Food Science and Technology, vol. 16, no. 12, pp. 555–567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Directive, 74/409/eec: The harmonization of the laws of the member states relating to honey, 1974.
  14. G. S. Tillotson, G. V. Doern, and J. M. Blondeau, “Optimal antimicrobial therapy: the balance of potency and exposure,” Expert Opinion on Investigational Drugs, vol. 15, no. 4, pp. 335–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Korta, A. Bakkali, L. A. Berrueta, B. Gallo, and F. Vicente, “Study of an accelerated solvent extraction procedure for the determination of acaricide residues in honey by high-performance liquid chromatography-diode array detector,” Journal of Food Protection, vol. 65, no. 1, pp. 161–166, 2002. View at Google Scholar · View at Scopus
  16. C. A. Mullin, M. Frazier, J. L. Frazier et al., “High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health,” PloS ONE, vol. 5, no. 3, Article ID e9754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Frazier, C. Mullin, J. Frazier, and S. Ashcraft, “What have pesticides got to do with it?” American Bee Journal, vol. 148, no. 6, pp. 521–523, 2008. View at Google Scholar · View at Scopus
  18. A. C. Martel, S. Zeggane, C. Aurières, P. Drajnudel, J. P. Faucon, and M. Aubert, “Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar or Asuntol 50,” Apidologie, vol. 38, no. 6, pp. 534–544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bogdanov, “Contaminants of bee products,” Apidologie, vol. 37, no. 1, pp. 1–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Codex Alimentarius, Draft revised for honey at step 6 of the Codex Procedure, CX 5/10.2, CL 1998/12-S, 1998.
  21. Commission Regulation (EC) No. 2377/90 of 26 June 1990 laying down a Community Procedure for the stablemen of maximum residue limits of veterinary medicinal products in foodstuff of animal origin (as amended by regulations) ECC No.2034/96 (OJ L272 25.10.1996, p 2), No2686/98 (OJ L337 12.12.1998, p 20) No. 1931/99 (OJ L240 10.09.1999, p 3), and No. 239/99(OJ L 290 12.11.1999, p 5).
  22. Food and Drug Administration of the United States, Pesticide tolerances, 2003, http://www.cfsan.fda.gov/.
  23. K. Wallner, “Varroacides and their residues in bee products,” Apidologie, vol. 30, no. 2-3, pp. 235–248, 1999. View at Google Scholar · View at Scopus
  24. U. Menkissoglu-Spiroudi, A. D. Tsigouri, G. C. Diamantidis, and A. T. Thrasyvoulou, “Residues in honey and beeswax caused by beekeeping treatments,” Fresenius Environmental Bulletin, vol. 10, no. 5, pp. 445–450, 2001. View at Google Scholar · View at Scopus
  25. T. Beliën, J. Kellers, K. Heylen et al., “Effects of sublethal doses of crop protection agents on honey bee (Apis mellifera) global colony vitality and its potential link with aberrant foraging activity,” Communications in Agricultural and Applied Biological Sciences, vol. 74, no. 1, pp. 245–253, 2009. View at Google Scholar · View at Scopus
  26. A. Choudhary and D. C. Sharma, “Pesticide residues in honey samples from himachal pradesh (India),” Bulletin of Environmental Contamination and Toxicology, vol. 80, no. 5, pp. 417–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R Anju, K. Beena, S. K. Gahlawat, R. C. Sihag, and T. S. Kathpal, “Multiresidue analysis of market honey samples for pesticidal contamination,” Pesticide Research Journal, vol. 9, no. 2, pp. 226–230, 1997. View at Google Scholar
  28. J. Al-Rifai and N. Akeel, “Determination of pesticide residues in imported and locally produced honey in Jordan,” Journal of Apicultural Research, vol. 36, no. 3-4, pp. 155–161, 1997. View at Google Scholar · View at Scopus
  29. H. Yavuz, G. O. Guler, A. Aktumsek, Y. S. Cakmak, and H. Ozparlak, “Determination of some organochlorine pesticide residues in honeys from Konya, Turkey,” Environmental Monitoring and Assessment, vol. 168, no. 1–4, pp. 277–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Ö. Erdoǧrul, “Levels of selected pesticides in honey samples from Kahramanmaraş, Turkey,” Food Control, vol. 18, no. 7, pp. 866–871, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. K. Das and S. Kaya, “Organophosphorus insecticide residues in honey produced in Turkey,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 3, pp. 378–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Beyoǧlu and G. Z. Omurtag, “Occurrence of naphthalene in honey consumed in Turkey as determined by high-pressure liquid chromatography,” Journal of Food Protection, vol. 70, no. 7, pp. 1735–1738, 2007. View at Google Scholar · View at Scopus
  33. S. Adamczyk, R. Lázaro, C. Pérez-Arquillué, P. Conchello, and A. Herrera, “Evaluation of residues of essential oil components in honey after different anti-varroa treatments,” Journal of Agricultural and Food Chemistry, vol. 53, no. 26, pp. 10085–10090, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Blasco, M. Fernández, A. Pena et al., “Assessment of pesticide residues in honey samples from Portugal and Spain,” Journal of Agricultural and Food Chemistry, vol. 51, no. 27, pp. 8132–8138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. P. Chauzat and J. P. Faucon, “Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera L.) in France,” Pest Management Science, vol. 63, no. 11, pp. 1100–1106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Rexilius, “Rückstände von Pflanzenbehandlungsmitteln in Rapshonig der Ernte 1984 aus Schleswig-Holstein—EineStatusuntersuchung,” Nachrichtenbl Dtsch Pflanzenschutzd, vol. 38, pp. 49–56, 1986. View at Google Scholar
  37. C Fléché, M Clément, S Zeggane, and J Faucon, “Contamination des produits de la ruche et risques pour la santé humaine: situation en France,” Revue Scientifique et Technique (International Office of Epizootics), vol. 16, no. 2, pp. 609–619, 1997. View at Google Scholar
  38. J. Rüegg, “MoniliaimObstbau—Prüfung von Fungiziden in der biologi schenind Integrierten Produktion,” Obst-und Weinbau, vol. 131, pp. 228–230, 1995. View at Google Scholar
  39. R Büchler and B. Volkmann, “Rückstände von Carbendazim und anderen Fungizidenim Bienenhonigaufgrund der Blütespritzung von Winterraps,” Gesun de Pflanzen, vol. 55, pp. 217–221, 2003. View at Google Scholar
  40. R. D. Fell and J. M. Cobb, “Miticide residues in Virginia honeys,” Bulletin of Environmental Contamination and Toxicology, vol. 83, no. 6, pp. 822–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Jan and K. Cerne, “Distribution of some organochlorine compounds (PCB, CBz, and DDE) in beeswax and honey,” Bulletin of Environmental Contamination and Toxicology, vol. 51, no. 5, pp. 640–646, 1993. View at Google Scholar · View at Scopus
  42. R. A. Morse, T. W. Culliney, W. H. Gutenmann, C. Littman, and D. Lisk, “Polychlorinated biphenyls in honey bees,” Bulletin of Environmental Contamination and Toxicology, vol. 38, no. 2, pp. 271–276, 1987. View at Google Scholar · View at Scopus
  43. J. Anderson and M. Wojtas, “Honey bees (Hymenoptera: Apidae) contaminated with pesticides and polychlorinated biphenyls,” Journal of Economic Entomology, vol. 79, no. 5, pp. 1200–1205, 1986. View at Google Scholar
  44. E. S. Lorenz, “Potential health effects of pesticides,” Ag Communications and Marketing, pp. 1–8, 2009. View at Google Scholar
  45. L. Ritter, K. R. Solomon, J. Forget, M. Stemeroff, and C. O'Leary, Persistent organic pollutants: an assessment report on: DDT, Aldrin, Dieldrin, Endrin, Chlordane, Heptachlor, Hexachlorobenzene, Mirex, Toxaphene, Polychlorinated Biphenyls, Dioxins and Furans. Prepared for The International Programme on Chemical Safety (IPCS), within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC), 2007.
  46. S. Lim, Y. M. Cho, K. S. Park, and H. K. Lee, “Persistent organic pollutants, mitochondrial dysfunction, and metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1201, pp. 166–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Centers for Disease Control and Prevention, Pesticides. Cdc.gov, 2007.
  48. D. Ortelli, P. Edder, and C. Corvi, “Analysis of chloramphenicol residues in honey by liquid chromatography-tandem mass spectrometry,” Chromatographia, vol. 59, no. 1-2, pp. 61–64, 2004. View at Google Scholar · View at Scopus
  49. M Saridaki-Papakonstadinou, S. Andredakis, A. Burriel, and I. Tsachev, “Determination of tetracycline residues in Greek honey,” Trakia Journal of Sciences, vol. 4, no. 1, pp. 33–36, 2006. View at Google Scholar
  50. R. Granja, A. M. Niño, R. Zucchetti, R. M. Niño, R. Patel, and A. G. Salerno, “Determination of erythromycin and lyiosin residues in honey by LC/MS/MS,” Journal of AOAC International, vol. 92, no. 3, pp. 975–980, 2009. View at Google Scholar · View at Scopus
  51. S. J. Adams, R. J. Fussell, M. Dickinson, S. Wilkins, and M. Sharman, “Study of the depletion of lincomycin residues in honey extracted from treated honeybee (Apis mellifera L.) colonies and the effect of the shook swarm procedure,” Analytica Chimica Acta, vol. 637, no. 1-2, pp. 315–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. T. B. Chen, W. H. Deng, W. H. Lu, R. M. Chen, and P. F. Rao, “Detection of residual antibiotics in honey with capillary electrophoresis,” School Equipment Production Unit, vol. 19, no. 1, pp. 91–93, 2001. View at Google Scholar · View at Scopus
  53. S. Johnson and N. Jadon, Antibiotic Residues in Honey, http://www.scribd.com/doc/38591126/7/Review-of-Literature.
  54. R. Solomon, S. Satheeja, and J. Vimalan, “Prevalence of antibiotics in nectar and honey in South Tamil Nadu, India,” Integra Biosciences, vol. 10, pp. 163–167, 2006. View at Google Scholar
  55. E. Forsgren, “European foulbrood in honey bees,” Journal of Invertebrate Pathology, vol. 103, supplement 1, pp. S5–S9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. C. Martel, S. Zeggane, P. Drajnudel, J. P. Faucon, and M. Aubert, “Tetracycline residues in honey after hive treatment,” Food Additives and Contaminants, vol. 23, no. 3, pp. 265–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. H. M. Thompson, R. J. Waite, S. Wilkins et al., “Effects of european foulbrood treatment regime on oxytetracycline levels in honey extracted from treated honeybee (Apis mellifera) colonies and toxicity to brood,” Food Additives and Contaminants, vol. 22, no. 6, pp. 573–578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Kaufmann and A. Kaenzig, “Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide,” Food Additives and Contaminants, vol. 21, no. 6, pp. 564–571, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. J. L. M. Vidal, M. D. M. Aguilera-Luiz, R. Romero-González, and A. G. Frenich, “Multiclass analysis of antibiotic residues in honey by ultraperformance liquid chromatography-tandem mass spectrometry,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1760–1767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Brasse, “Stellungnahme der BBA zum Streptomycin-Problem. Teil 2: Bewertung der RückstandswerteimHonig,” Allgemeine Deutsche Imkerzeitung, vol. 35, pp. 24–25, 2001. View at Google Scholar
  61. W. Reybroeck, “Residues of antibiotics and sulfonamides in honey on the Belgian market,” Apiacta, vol. 38, pp. 23–30, 2003. View at Google Scholar
  62. J. Diserens, “Contaminants and residues in Food. Strategies (if any) to screen and analyze veterinary drug residues in food from animal origin,” in Proceedings of the 5th International Fresenius Conference Nestle Research Center, Lausanne, Switzerland, 2007, http://www.biocop.org/.../ContaminantsResiduesinFood5thFresenuis ppt.pdf.
  63. C. M. Velicer, S. R. Heckbert, J. W. Lampe, J. D. Potter, C. A. Robertson, and S. H. Taplin, “Antibiotic use in relation to the risk of breast cancer,” The Journal of the American Medical Association, vol. 291, no. 7, pp. 827–835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Paige, L. Tollefson, and M. Miller, “Public health impact on drug residues in animal tisues,” Veterinary and Human Toxicology, vol. 9, pp. 1–27, 1997. View at Google Scholar
  65. M. Gilliam and D. B. Prest, “Microbiology of feces of the larval honey bee, Apis mellifera,” Journal of Invertebrate Pathology, vol. 49, no. 1, pp. 70–75, 1987. View at Google Scholar · View at Scopus
  66. M. El-leithy and K. El-sibael, “Role of microorganisms isolated from bees, its ripening and fermentation of honey,” Egyptian Journal of Microbiology, vol. 75, pp. 679–681, 1992. View at Google Scholar
  67. C. Tysset and C. De Rantline de la Roy Durand, Contribution to the Study of Intestinal Microbial Infection of Healthy Honeybees: Inventory of Bacterial Population by Negative Organisms, Department of Agriculture, SEA-AR, Eastern Region Research Centers, Philadelphia, Pa, USA, 1991.
  68. J. A. Snowdon and D. O. Cliver, “Microorganisms in honey,” International Journal of Food Microbiology, vol. 31, no. 1–3, pp. 1–26, 1996. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Snowdon, “The microbiology of honey—meeting your buyers' specifications,” American Bee Journal, vol. 139, pp. 51–60, 1999. View at Google Scholar
  70. P. B. Olaitan, O. E. Adeleke, and I. O. Ola, “Honey: a reservoir for microorganisms and an inhibitory agent for microbes,” African Health Sciences, vol. 7, no. 3, pp. 159–165, 2007. View at Google Scholar · View at Scopus
  71. H. Nakano and G. Sakaguchi, “An unusually heavy contamination of honey products by Clostridium botulinum type F and Bacillus alvei,” FEMS Microbiology Letters, vol. 79, no. 2-3, pp. 171–177, 1991. View at Google Scholar · View at Scopus
  72. O. P. de Centorbi, S. E. Satorres, L. E. Alcaraz, H. J. Centorbi, and R. Fernández, “Detection of Clostridium botulinum spores in honey,” Revista Argentina de microbiología, vol. 29, no. 3, pp. 147–151, 1997. View at Google Scholar · View at Scopus
  73. R. P. Schocken-Iturrino, M. C. Carneiro, E. Kato, J. O. B. Sorbara, O. D. Rossi, and L. E. R. Gerbasi, “Study of the presence of the spores of Clostridium botulinum in honey in Brazil,” FEMS Immunology and Medical Microbiology, vol. 24, no. 3, pp. 379–382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. T. F. Midura, S. Snowden, R. M. Wood, and S. S. Arnon, “Isolation of Clostridium botulinum from honey,” Journal of Clinical Microbiology, vol. 9, no. 2, pp. 282–283, 1979. View at Google Scholar · View at Scopus
  75. H. Nakano, Y. Yoshikuni, H. Hashimoto, and G. Sakaguchi, “Detection of Clostridium botulinum in natural sweetening,” International Journal of Food Microbiology, vol. 16, no. 2, pp. 117–121, 1992. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Nevas, S. Hielm, M. Lindström, H. Horn, K. Koivulehto, and H. Korkeala, “High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction,” International Journal of Food Microbiology, vol. 72, no. 1-2, pp. 45–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. L. A. King, M. R. Popoff, C. Mazuet, E. Espié, V. Vaillant, and H. de Valk, “Infant botulism in France,” Archives de Pediatrie, vol. 17, no. 9, pp. 1288–1292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Fenicia, A. M. Ferrini, P. Aureli, and M. Pocecco, “A case of infant botulism associated with honey feeding in italy,” European Journal of Epidemiology, vol. 9, no. 6, pp. 671–673, 1993. View at Google Scholar · View at Scopus
  79. P. A. Tølløfsrud, E. A. Kvittingen, P. E. Granum, and A. Vøllo, “Botulism in newborn infants,” Tidsskrift for den Norske Laegeforening, vol. 118, no. 28, pp. 4355–4356, 1998. View at Google Scholar · View at Scopus
  80. S. S. Arnon, T. F. Midura, K. Damus, B. Thompson, R. Wood, and J. Chin, “Honey and other environmental risk factors for infant botulism,” Journal of Pediatrics, vol. 94, no. 2, pp. 331–336, 1979. View at Google Scholar · View at Scopus
  81. T. F. Midura, “Update: infant botulism,” Clinical Microbiology Reviews, vol. 9, no. 2, pp. 119–125, 1996. View at Google Scholar · View at Scopus
  82. N. Cox and R. Hinkle, “Infant botulism,” American Family Physician, vol. 65, no. 7, pp. 1388–1392, 2002. View at Google Scholar · View at Scopus
  83. J. A. Gimenez, M. A. Gimenez, and B. R. Dasgupta, “Characterization of the neurotoxin isolated from a Clostridium baratii strain implicated in infant botulism,” Infection and Immunity, vol. 60, no. 2, pp. 518–522, 1991. View at Google Scholar · View at Scopus
  84. G. Formato, R. Zilli, R. Condoleo, S. Marozzi, I. Davis, and F. Smulders, “Risk management in primary apicultural production. part 2: a hazard analysis critical control point approach to assuring the safety of unprocessed honey,” The Veterinary Quarterly, vol. 31, no. 1, pp. 87–97, 2011. View at Google Scholar
  85. S. Bogdanov, T. Jurendic, R. Sieber, and P. Gallmann, “Honey for nutrition and health: a review,” Journal of the American College of Nutrition, vol. 27, no. 6, pp. 677–689, 2008. View at Google Scholar · View at Scopus
  86. T. Postmes, A. E. van den Bogaard, and M. Hazen, “The sterilization of honey with cobalt 60 gamma radiation: a study of honey spiked with spores of Clostridium botulinum and Bacillus subtilis,” Experientia, vol. 51, no. 9-10, pp. 986–989, 1995. View at Publisher · View at Google Scholar · View at Scopus
  87. P. C. Molan and K. L. Allen, “The effect of gamma-irradiation on the antibacterial activity of honey,” Journal of Pharmacy and Pharmacology, vol. 48, no. 11, pp. 1206–1209, 1996. View at Google Scholar · View at Scopus
  88. M. Adrienne, “Mad honey, toxic honey in history,” Archaeology, vol. 48, no. 6, 1995. View at Google Scholar
  89. B. Kettlewellh, “A story of nature's Debauch,” Entomologist, vol. 88, pp. 45–47, 1945. View at Google Scholar
  90. I. Koca and A. F. Koca, “Poisoning by mad honey: a brief review,” Food and Chemical Toxicology, vol. 45, no. 8, pp. 1315–1318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. E. Okuyan, A. Uslu, and M. Ozan Levent, “Cardiac effects of “mad honey”: a case series,” Clinical Toxicology, vol. 48, no. 6, pp. 528–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. C. G. Daugherty, “Toxic honey and the march up-country,” Journal of Medical Biography, vol. 13, no. 2, pp. 104–107, 2005. View at Google Scholar · View at Scopus
  93. S. Geroulanos, B. Attinger, and M. Cakmakçi, “Honey-induced poisoning,” Schweizerische Rundschau fur Medizin Praxis, vol. 81, no. 17, pp. 535–540, 1992. View at Google Scholar · View at Scopus
  94. J. Marciniak and M. Sikorski, “Intoxication with alcaloids of datura stramonium and datura inoxia following honey ingestion,” Polski Tygodnik Lekarski, vol. 27, no. 26, pp. 1002–1003, 1972. View at Google Scholar · View at Scopus
  95. H. Özhan, R. Akdemir, M. Yazici, H. Gündüz, S. Duran, and C. Uyan, “Cardiac emergencies caused by honey ingestion: a single centre experience,” Emergency Medicine Journal, vol. 21, no. 6, pp. 742–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. Bees and Toxic chemicals, Wikipedia, http://en.wikipedia.org/wiki/Bees_and_toxic_chemicals.