Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 959824, 9 pages
http://dx.doi.org/10.1100/2012/959824
Research Article

Deficiency in Galectin-3 Promotes Hepatic Injury in CDAA Diet-Induced Nonalcoholic Fatty Liver Disease

1Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
2Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
3Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan

Received 3 December 2011; Accepted 26 December 2011

Academic Editors: S.-N. Lu and D. Meyre

Copyright © 2012 Kazuhiro Nomoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Kuwabara and F. T. Liu, “Galectin-3 promotes adhesion of human neutrophils to laminin,” Journal of Immunology, vol. 156, no. 10, pp. 3939–3944, 1996. View at Google Scholar · View at Scopus
  2. H. Inohara, S. Akahani, K. Koths, and A. Raz, “Interactions between galectin-3 and Mac-2-binding protein mediate cell-cell adhesion,” Cancer Research, vol. 56, no. 19, pp. 4530–4534, 1996. View at Google Scholar · View at Scopus
  3. J. Ochieng, P. Warfield, B. Green-Jarvis, and I. Fentie, “Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin,” Journal of Cellular Biochemistry, vol. 75, no. 3, pp. 505–514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sato, N. Ouellet, I. Pelletier, M. Simard, A. Rancourt, and M. G. Bergeron, “Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia,” Journal of Immunology, vol. 168, no. 4, pp. 1813–1822, 2002. View at Google Scholar · View at Scopus
  5. J. Zou, V. V. Glinsky, L. A. Landon, L. Matthews, and S. L. Deutscher, “Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion,” Carcinogenesis, vol. 26, no. 2, pp. 309–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Sano, D. K. Hsu, L. Yu et al., “Human galectin-3 is a novel chemoattractant for monocytes and macrophages,” Journal of Immunology, vol. 165, no. 4, pp. 2156–2164, 2000. View at Google Scholar · View at Scopus
  7. S. F. Dagher, J. L. Wang, and R. J. Patterson, “Identification of galectin-3 as a factor in pre-mRNA splicing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1213–1217, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Y. Yang, D. K. Hsu, and F. T. Liu, “Expression of galectin-3 modulates T-cell growth and apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6737–6742, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Fowlis, C. Colnot, M. A. Ripoche, and F. Poirier, “Galectin-3 is expressed in the notochord, developing bones, and skin of the postimplantation mouse embryo,” Developmental Dynamics, vol. 203, no. 2, pp. 241–251, 1995. View at Google Scholar · View at Scopus
  10. F. A. Van Den Brûle, P. L. Fernandez, C. Buicu et al., “Differential expression of galectin-1 and galectin-3 during first trimester human embryogenesis,” Developmental Dynamics, vol. 209, no. 4, pp. 399–405, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. R. F. Cerra, M. A. Gitt, and S. H. Barondes, “Three soluble rat β-galactoside-binding lectins,” Journal of Biological Chemistry, vol. 260, no. 19, pp. 10474–10477, 1985. View at Google Scholar · View at Scopus
  12. K. Yamazaki, A. Kawai, M. Kawaguchi et al., “Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21WAF1/Cip1/Sdi1, and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4,” Biochemical and Biophysical Research Communications, vol. 280, no. 4, pp. 1077–1084, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Ota, T. Takamura, S. Kurita et al., “Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis,” Gastroenterology, vol. 132, no. 1, pp. 282–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Flotte, T. A. Springer, and G. J. Rhorbecke, “Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets,” American Journal of Pathology, vol. 111, no. 1, pp. 112–124, 1983. View at Google Scholar · View at Scopus
  15. D. K. Hsu, C. A. Dowling, K. C. G. Jeng, J. T. Chen, R. Y. Yang, and F. T. Liu, “Galectin-3 expression is induced in cirrhotic liver and hepatocellular carcinoma,” International Journal of Cancer, vol. 81, no. 4, pp. 519–526, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Maeda, N. Kawada, S. Seki et al., “Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways,” Journal of Biological Chemistry, vol. 278, no. 21, pp. 18938–18944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. N. C. Henderson, A. C. Mackinnon, S. L. Farnworth et al., “Galectin-3 regulates myofibroblast activation and hepatic fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 5060–5065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Nakanishi, K. Tsuneyama, K. Nomoto et al., “Nonalcoholic steatohepatitis and hepatocellular carcinoma in galectin-3 knockout mice,” Hepatology Research, vol. 38, no. 12, pp. 1241–1251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Nomoto, K. Tsuneyama, H. O. Abdel Aziz et al., “Disrupted galectin-3 causes non-alcoholic fatty liver disease in male mice,” Journal of Pathology, vol. 210, no. 4, pp. 469–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. E. Reid, “Nonalcoholic steatohepatitis,” Gastroenterology, vol. 121, no. 3, pp. 710–723, 2001. View at Google Scholar · View at Scopus
  21. P. Angulo, “Medical progress: nonalcoholic fatty liver disease,” New England Journal of Medicine, vol. 346, no. 16, pp. 1221–1231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. B. A. Neuschwander-Tetri and S. H. Caldwell, “Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference,” Hepatology, vol. 37, no. 5, pp. 1202–1219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. E. M. Brunt, “Nonalcoholic steatohepatitis: definition and pathology,” Seminars in Liver Disease, vol. 21, no. 1, pp. 3–16, 2001. View at Google Scholar · View at Scopus
  24. D. E. Kleiner, E. M. Brunt, M. Van Natta et al., “Design and validation of a histological scoring system for nonalcoholic fatty liver disease,” Hepatology, vol. 41, no. 6, pp. 1313–1321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Chitturi, S. Abeygunasekera, G. C. Farrell et al., “NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome,” Hepatology, vol. 35, no. 2, pp. 373–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Pagano, G. Pacini, G. Musso et al., “Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association,” Hepatology, vol. 35, no. 2, pp. 367–372, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. P. Day and O. F. W. James, “Steatohepatitis: a tale of two ‘Hits’?” Gastroenterology, vol. 114, no. 4, pp. 842–845, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Browning and J. D. Horton, “Molecular mediators of hepatic steatosis and liver injury,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 147–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Kamada, T. Takehara, and N. Hayashi, “Adipocytokines and liver disease,” Journal of Gastroenterology, vol. 43, no. 11, pp. 811–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. N. M. W. De Alwis and C. P. Day, “Genetics of alcoholic liver disease and nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 27, no. 1, pp. 44–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Rubio, E. Guruceaga, M. Vázquez-Chantada et al., “Identification of a gene-pathway associated with non-alcoholic steatohepatitis,” Journal of Hepatology, vol. 46, no. 4, pp. 708–718, 2007. View at Publisher · View at Google Scholar
  33. W. Sato, Y. Horie, E. Kataoka et al., “Hepatic gene expression in hepatocyte-specific Pten deficient mice showing steatohepatitis without ethanol challenge,” Hepatology Research, vol. 34, no. 4, pp. 256–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. M. Younossi, A. Baranova, K. Ziegler et al., “A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease,” Hepatology, vol. 42, no. 3, pp. 665–674, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Li, M. Komai-Koma, D. S. Gilchrist et al., “Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation,” Journal of Immunology, vol. 181, no. 4, pp. 2781–2789, 2008. View at Google Scholar · View at Scopus
  36. D. K. Hsu, R. Y. Yang, Z. Pan et al., “Targeted disruption of the Galectin-3 gene results in attenuated peritoneal inflammatory responses,” American Journal of Pathology, vol. 156, no. 3, pp. 1073–1083, 2000. View at Google Scholar · View at Scopus
  37. E. Ip, G. Farrell, P. Hall, G. Robertson, and I. Leclercq, “Administration of the potent PPARα agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice,” Hepatology, vol. 39, no. 5, pp. 1286–1296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. E. Feldstein, A. Canbay, P. Angulo et al., “Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis,” Gastroenterology, vol. 125, no. 2, pp. 437–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. P. S. Ribeiro, H. Cortez-Pinto, S. Solá et al., “Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients,” American Journal of Gastroenterology, vol. 99, no. 9, pp. 1708–1717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Schattenberg, P. R. Galle, and M. Schuchmann, “Apoptosis in liver disease,” Liver International, vol. 26, no. 8, pp. 904–911, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Ogawa, H. Kanegane, K. Tsuneyama et al., “Platelet-derived growth factor may be associated with fibrosis in a Down syndrome patient with transient myeloproliferative disorder,” European Journal of Haematology, vol. 81, no. 1, pp. 58–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Campbell, S. D. Hughes, D. G. Gilbertson et al., “Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 9, pp. 3389–3394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Cai, M. Yuan, D. F. Frantz et al., “Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB,” Nature Medicine, vol. 11, no. 2, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Wieckowska, B. G. Papouchado, Z. Li, R. Lopez, N. N. Zein, and A. E. Feldstein, “Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis,” American Journal of Gastroenterology, vol. 103, no. 6, pp. 1372–1379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Bugianesi, N. Leone, E. Vanni et al., “Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma,” Gastroenterology, vol. 123, no. 1, pp. 134–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. H. B. El-Serag and K. L. Rudolph, “Hepatocellular carcinoma: epidemiology and molecular carcinogenesis,” Gastroenterology, vol. 132, no. 7, pp. 2557–2576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. M. London and J. George, “Pathogenesis of NASH: animal Models,” Clinics in Liver Disease, vol. 11, no. 1, pp. 55–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Nakanishi, K. Tsuneyama, M. Fujimoto et al., “Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia,” Journal of Autoimmunity, vol. 30, no. 1-2, pp. 42–50, 2008. View at Publisher · View at Google Scholar · View at Scopus