Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 960219, 9 pages
http://dx.doi.org/10.1100/2012/960219
Clinical Study

B Cell Responses to CpG Correlate with CXCL16 Expression Levels in Common Variable Immunodeficiency

Pediatrics Clinic and Institute of Molecular Medicine “A. Nocivelli”, University of Brescia, piazzale Spedali Civili 1, 25123 Brescia, Italy

Received 3 October 2011; Accepted 2 November 2011

Academic Editors: A. A. Manfredi and M. Zouali

Copyright © 2012 Vassilios Lougaris et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Park, J. T. Li, J. B. Hagan, D. E. Maddox, and R. S. Abraham, “Common variable immunodeficiency: a new look at an old disease,” The Lancet, vol. 372, no. 9637, pp. 489–502, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. P. F. K. Yong, M. Tarzi, I. Chua, B. Grimbacher, and R. Chee, “Common variable immunodeficiency: an update on etiology and management,” Immunology and Allergy Clinics of North America, vol. 28, no. 2, pp. 367–386, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. Bacchelli, S. Buckridge, A. J. Thrasher, and H. B. Gaspar, “Translational Mini-Review Series on Immunodeficiency:Molecular defects in common variable immunodeficiency,” Clinical and Experimental Immunology, vol. 149, no. 3, pp. 401–409, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. O. Kopecký and Š. Lukešová, “Genetic defects in common variable immunodeficiency,” International Journal of Immunogenetics, vol. 34, no. 4, pp. 225–229, 2007. View at Publisher · View at Google Scholar · View at PubMed
  5. B. R. Haymore, C. P. Mikita, and G. C. Tsokos, “Common variable immune deficiency (CVID) presenting as an autoimmune disease: role of memory B cells,” Autoimmunity Reviews, vol. 7, no. 4, pp. 309–312, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. U. Salzer, A. Maul-Pavicic, C. Cunningham-Rundles et al., “ICOS deficiency in patients with common variable immunodeficiency,” Clinical Immunology, vol. 113, no. 3, pp. 234–240, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. E. Castigli, S. A. Wilson, L. Garibyan et al., “TACI is mutant in common variable immunodeficiency and IgA deficiency,” Nature Genetics, vol. 37, no. 8, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. U. Salzer, H. M. Chapel, A. D. B. Webster et al., “Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans,” Nature Genetics, vol. 37, no. 8, pp. 820–828, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Warnatz, U. Salzer, M. Rizzi et al., “B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13945–13950, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. C. van Zelm, I. Reisli, M. van der Burg et al., “An antibody-deficiency syndrome due to mutations in the CD19 gene,” The New England Journal of Medicine, vol. 354, no. 18, pp. 1901–1912, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. T. W. Kuijpers, R. J. Bende, P. A. Baars et al., “CD20 deficiency in humans results in impaired T cell-independent antibody responses,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 214–222, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. C. Van Zelm, J. Smet, B. Adams et al., “CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1265–1274, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. L. Peng, “Signaling in B cells via Toll-like receptors,” Current Opinion in Immunology, vol. 17, no. 3, pp. 230–236, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. Cunningham-Rundles, L. Radigan, A. K. Knight, L. Zhang, L. Bauer, and A. Nakazawa, “TLR9 activation is defective in common variable immune deficiency,” Journal of Immunology, vol. 176, no. 3, pp. 1978–1987, 2006. View at Google Scholar · View at Scopus
  15. J. E. Yu, A. K. Knight, L. Radigan et al., “Toll-like receptor 7 and 9 defects in common variable immunodeficiency,” Journal of Allergy and Clinical Immunology, vol. 124, no. 2, pp. 349–356, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. M. Gursel, I. Gursel, H. S. Mostowski, and D. M. Klinman, “CXCL16 influences the nature and specificity of CpG-induced immune activation,” Journal of Immunology, vol. 177, no. 3, pp. 1575–1580, 2006. View at Google Scholar · View at Scopus
  17. A. Wilbanks, S. C. Zondlo, K. Murphy et al., “Expression cloning of the STRL33/BONZO/TYMSTR ligand reveals elements of CC, CXC, and CX3C chemokines,” Journal of Immunology, vol. 166, no. 8, pp. 5145–5154, 2001. View at Google Scholar · View at Scopus
  18. T. Shimaoka, T. Nakayama, N. Kume et al., “Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain,” Journal of Immunology, vol. 171, no. 4, pp. 1647–1651, 2003. View at Google Scholar · View at Scopus
  19. S. Tabata, N. Kadowaki, T. Kitawaki et al., “Distribution and kinetics of SR-PSOX/CXCL16 and CXCR6 expression on human dendritic cell subsets and CD4+ T cells,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 777–786, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. T. Shimaoka, T. Nakayama, N. Fukumoto et al., “Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells,” Journal of Leukocyte Biology, vol. 75, no. 2, pp. 267–274, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. O. L. Fahy, S. L. Townley, and S. R. McColl, “CXCL16 regulates cell-mediated immunity to Salmonella enterica serovar enteritidis via promotion of gamma interferon production,” Infection and Immunity, vol. 74, no. 12, pp. 6885–6894, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. T. Shimaoka, T. Nakayama, N. Kume et al., “Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain,” Journal of Immunology, vol. 171, no. 4, pp. 1647–1651, 2003. View at Google Scholar
  23. J. Lin, D. Ziring, S. Desai et al., “TNFα blockade in human diseases: an overview of efficacy and safety,” Clinical Immunology, vol. 126, no. 1, pp. 13–30, 2008. View at Publisher · View at Google Scholar · View at PubMed
  24. S. Agarwal and C. Cunningham-Rundles, “Autoimmunity in common variable immunodeficiency,” Current Allergy and Asthma Reports, vol. 9, no. 5, pp. 347–352, 2009. View at Publisher · View at Google Scholar
  25. D. Brandt and M. E. Gershwin, “Common variable immune deficiency and autoimmunity,” Autoimmunity Reviews, vol. 5, no. 7, pp. 465–470, 2006. View at Publisher · View at Google Scholar · View at PubMed
  26. A. K. Knight and C. Cunningham-Rundles, “Inflammatory and autoimmune complications of common variable immune deficiency,” Autoimmunity Reviews, vol. 5, no. 2, pp. 156–159, 2006. View at Publisher · View at Google Scholar · View at PubMed