Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 973436, 10 pages
http://dx.doi.org/10.1100/2012/973436
Research Article

Characterization of eDNA from the Clinical Strain Acinetobacter baumannii AIIMS 7 and Its Role in Biofilm Formation

1Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411007, India
2Department of Microbiology, University of Pune, Pune 411007, India

Received 13 October 2011; Accepted 6 December 2011

Academic Editor: Duarte Miguel Prazeres

Copyright © 2012 Praveen K. Sahu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Richet and P. E. Fournier, “Nosocomial infections caused by Acinetobacter baumannii: a major threat worldwide,” Infection Control and Hospital Epidemiology, vol. 27, no. 7, pp. 645–646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. L. Joly-Guillou, “Clinical impact and pathogenicity of Acinetobacter,” Clinical Microbiology and Infection, vol. 11, no. 11, pp. 868–873, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Wilson, C. J. Knipe, M. J. Zieger et al., “Direct costs of multidrug-resistant Acinetobacter baumannii in the burn unit of a public teaching hospital,” American Journal of Infection Control, vol. 32, no. 6, pp. 342–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. B. Patwardhan, P. K. Dhakephalkar, K. B. Niphadkar, and B. A. Chopade, “A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harbouring multiple plasmids,” Indian Journal of Medical Research, vol. 128, no. 2, pp. 178–187, 2008. View at Google Scholar · View at Scopus
  5. B. A. Chopade, R. B. Patwardhan, and P. K. Dhakephalkar, “Acinetobacter infections in India: genetic and molecular biology studies and some approaches to the problem,” in Tropical Diseases: Molecular biology and control strategies, S. Kumar and A. K. Sen, Eds., pp. 704–716, CSIR Directorate of Publications, Council of Scientific and Industrial Research, New Delhi, India, 1994. View at Google Scholar
  6. L. M. Deshpande and B. A. Chopade, “Plasmid mediated silver resistance in Acinetobacter baumannii,” BioMetals, vol. 7, no. 1, pp. 49–56, 1994. View at Google Scholar · View at Scopus
  7. M. R. Shakibaie, P. K. Dhakephalker, B. P. Kapadnis, G. A. Salajaghe, and B. A. Chopade, “Plasmid mediated silver and antibiotic resistance in Acinetobacter baumannii BL54,” Iranian Journal of Medical Sciences, vol. 23, no. 12, pp. 30–36, 1998. View at Google Scholar
  8. A. Y. Peleg, H. Seifert, and D. L. Paterson, “Acinetobacter baumannii: emergence of a successful pathogen,” Clinical Microbiology Reviews, vol. 21, no. 3, pp. 538–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. W. Lee, Y. M. Koh, J. Kim et al., “Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces,” Clinical Microbiology and Infection, vol. 14, no. 1, pp. 49–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. de Breij, L. Dijkshoorn, E. Lagendijk et al., “Do biofilm formation and interactions with human cells explain the clinical success of Acinetobacter baumannii?” PLoS One, vol. 5, no. 5, Article ID e10732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Tomaras, M. J. Flagler, C. W. Dorsey, J. A. Gaddy, and L. A. Actis, “Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology,” Microbiology, vol. 154, no. 11, pp. 3398–3409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. R. E. Steinberger and P. A. Holden, “Extracellular DNA in single- and multiple-species unsaturated biofilms,” Applied and Environmental Microbiology, vol. 71, no. 9, pp. 5404–5410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. B. Whitchurch, T. Tolker-Nielsen, P. C. Ragas, and J. S. Mattick, “Extracellular DNA required for bacterial biofilm formation,” Science, vol. 295, no. 5559, p. 1487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Hara and S. Ueda, “A study on the mechanism of DNA excretion from P. aeruginosa KYU-1. Effect of mitomycin C on extracellular DNA production,” Agricultural and Biological Chemistry, vol. 45, no. 11, pp. 2457–2461, 1981. View at Google Scholar · View at Scopus
  16. Z. Qin, Y. Ou, L. Yang et al., “Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis,” Microbiology, vol. 153, no. 7, pp. 2083–2092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. V. C. Thomas, Y. Hiromasa, N. Harms, L. Thurlow, J. Tomich, and L. E. Hancock, “A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis,” Molecular Microbiology, vol. 72, no. 4, pp. 1022–1036, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C.-Y. Hsu, M.-H. Lin, C.-C. Chen et al., “Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus,” FEMS Immunology and Medical Microbiology, vol. 63, no. 2, pp. 236–247, 2011. View at Publisher · View at Google Scholar
  19. C. N. McQueary and L. A. Actis, “Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties,” Journal of Microbiology, vol. 49, no. 2, pp. 243–250, 2011. View at Publisher · View at Google Scholar
  20. J. A. Gaddy and L. A. Actis, “Regulation of Acinetobacter baumannii biofilm formation,” Future Microbiology, vol. 4, no. 3, pp. 273–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. N. K. Pour, D. H. Dusane, P. K. Dhakephalkar, F. R. Zamin, S. S. Zinjarde, and B. A. Chopade, “Biofilm formation by Acinetobacter baumanniistrains isolated from urinary tract infection and urinary catheters,” FEMS Immunology and Medical Microbiology, vol. 62, no. 3, pp. 328–338, 2011. View at Publisher · View at Google Scholar
  22. R. Palmen and K. J. Hellingwerf, “Uptake and processing of DNA by Acinetobacter calcoaceticus—a review,” Gene, vol. 192, no. 1, pp. 179–190, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Thomas and K. M. Nielsen, “Mechanisms of, and barriers to, horizontal gene transfer between bacteria,” Nature Reviews Microbiology, vol. 3, no. 9, pp. 711–721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. de Vries and W. Wackernagel, “Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2094–2099, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. G. Lorenz, D. Gerjets, and W. Wackernagel, “Release of transforming plasmid and chromosomal DNA from two cultured soil bacteria,” Archives of Microbiology, vol. 156, no. 4, pp. 319–326, 1991. View at Google Scholar · View at Scopus
  26. K. R. Pardesi, Role of plasmids in spread of antibiotic resistance in Acinetobacter species, isolated from healthy human skin and clinical specimens, Ph.D. thesis, University of Pune, Maharashtra, India, 2009.
  27. S. P. Yavankar, K. P. Pardesi, and B. A. Chopade, “Species distribution and physiological characterization of Acinetobactergenospecies from healthy human skin of tribal population in India,” Indian Journal of Medical Microbiology, vol. 25, no. 4, pp. 336–345, 2007. View at Google Scholar · View at Scopus
  28. E. Juni, “Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus,” Journal of Bacteriology, vol. 112, no. 2, pp. 917–931, 1972. View at Google Scholar · View at Scopus
  29. P. J. M. Bouvet and P. A. D. Grimont, “Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii,” International Journal of Systematic Bacteriology, vol. 36, no. 2, pp. 228–240, 1986. View at Google Scholar · View at Scopus
  30. C. Corinaldesi, R. Danovaro, and A. Dell'Anno, “Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments,” Applied and Environmental Microbiology, vol. 71, no. 1, pp. 46–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Yaron, G. L. Kolling, L. Simon, and K. R. Matthews, “Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria,” Applied and Environmental Microbiology, vol. 66, no. 10, pp. 4414–4420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Kadurugamuwa and T. J. Beveridge, “Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other Gram-negative bacteria,” Microbiology, vol. 145, no. 8, pp. 2051–2060, 1999. View at Google Scholar · View at Scopus
  33. T. W. Loehfelm, N. R. Luke, and A. A. Campagnari, “Identification and characterization of an Acinetobacter baumannii biofilm-associated protein,” Journal of Bacteriology, vol. 190, no. 3, pp. 1036–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. R. Raya and A. M. Hebert, “Isolation of phage via induction of lysogens,” in Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions, M. R. J. Clokie and A. M. Kropinski, Eds., pp. 23–32, Humana Press, University of Michigan, 2009. View at Google Scholar
  35. J. H. Paul and A. W. David, “Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms,” Applied and Environmental Microbiology, vol. 55, no. 8, pp. 1865–1869, 1989. View at Google Scholar · View at Scopus
  36. M. D. Adams, K. Goglin, N. Molyneaux et al., “Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii,” Journal of Bacteriology, vol. 190, no. 24, pp. 8053–8064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. J. S. Jin, S.-O. Kwon, D. C. Moon et al., “Acinetobacter baumannii secretes cytotoxic outer membrane protein a via outer membrane vesicles,” PLoS One, vol. 6, no. 2, Article ID e17027, 2011. View at Publisher · View at Google Scholar
  38. S. O. Kwon, Y. S. Gho, J. C. Lee, and S. I. Kim, “Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate,” FEMS Microbiology Letters, vol. 297, no. 2, pp. 150–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. W. Dorward and C. F. Garon, “DNA is packaged within membrane-derived vesicles of gram-negative but not gram-positive bacteria,” Applied and Environmental Microbiology, vol. 56, no. 6, pp. 1960–1962, 1990. View at Google Scholar · View at Scopus
  40. M. Renelli, V. Matias, R. Y. Lo, and T. J. Beveridge, “DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential,” Microbiology, vol. 150, no. 7, pp. 2161–2169, 2004. View at Google Scholar · View at Scopus
  41. W. C. Chiang and T. Tolker-Nielsen, “Extracellular DNA as matrix component microbial biofilms,” in Extracellular Nucleic Acids, Y. Kikuchi and E. Rykova, Eds., pp. 1–37, Springer, Berlin, Germany, 2010. View at Google Scholar
  42. S. Vilain, J. M. Pretorius, J. Theron, and V. S. Brözel, “DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms,” Applied and Environmental Microbiology, vol. 75, no. 9, pp. 2861–2868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. C. Flemming and J. Wingender, “The biofilm matrix,” Nature Reviews Microbiology, vol. 8, no. 9, pp. 623–633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Yang, K. B. Barken, M. E. Skindersoe, A. B. Christensen, M. Givskov, and T. Tolker-Nielsen, “Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa,” Microbiology, vol. 153, no. 5, pp. 1318–1328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Martins, P. Uppuluri, D. P. Thomas et al., “Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms,” Mycopathologia, vol. 169, no. 5, pp. 323–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. U. Böckelmann, A. Janke, R. Kuhn et al., “Bacterial extracellular DNA forming a defined network-like structure,” FEMS Microbiology Letters, vol. 262, no. 1, pp. 31–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Q. M. Parks, R. L. Young, K. R. Poch, K. C. Malcolm, M. L. Vasil, and J. A. Nick, “Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy,” Journal of Medical Microbiology, vol. 58, no. 4, pp. 492–502, 2009. View at Publisher · View at Google Scholar · View at Scopus