Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 135470, 7 pages
http://dx.doi.org/10.1155/2013/135470
Research Article

Kisspeptin-10 Modulates the Proliferation and Differentiation of the Rhesus Monkey Derived Stem Cell Line: R366.4

1State Key Laboratory of Brain and Cognitive Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
2Reproductive Neuroendocrinology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
3State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China

Received 16 September 2013; Accepted 9 October 2013

Academic Editors: M. W. Jann and B. A. Moura

Copyright © 2013 Tanzeel Huma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Evans and M. H. Kaufman, “Establishment in culture of pluripotential cells from mouse embryos,” Nature, vol. 292, no. 5819, pp. 154–156, 1981. View at Google Scholar · View at Scopus
  2. G. R. Martin, “Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 12, pp. 7634–7638, 1981. View at Google Scholar · View at Scopus
  3. T. Li, J. Zheng, Y. Xie et al., “Transplantable neural progenitor populations derived from rhesus monkey embryonic stem cells,” Stem Cells, vol. 23, no. 9, pp. 1295–1303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. X. L. Kuai, C. Gagliardi, M. Flaat, and B. A. Bunnell, “Differentiation of nonhuman primate embryonic stem cells along neural lineages,” Differentiation, vol. 77, no. 3, pp. 229–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Czyz and A. M. Wobus, “Embryonic stem cell differentiation: the role of extracellular factors,” Differentiation, vol. 68, no. 4-5, pp. 167–174, 2001. View at Google Scholar · View at Scopus
  6. J. A. Thomson, J. Kalishman, T. G. Golos et al., “Isolation of a primate embryonic stem cell line,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7844–7848, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, pp. 1145–1147, 1998. View at Google Scholar
  8. G. M. de Peppo and D. Marolt, “State of the art in stem cell research: human embryonic stem cells, induced pluripotent stem cells, and trans differentiation,” Journal of Blood Transfusion, vol. 2012, Article ID 317632, 10 pages, 2012. View at Publisher · View at Google Scholar
  9. J. A. Byrne, S. M. Mitalipov, and D. P. Wolf, “Current progress with primate embryonic stem cells,” Current Stem Cell Research & Therapy, vol. 1, no. 2, pp. 127–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Y. Pau and D. P. Wolf, “Derivation and characterization of monkey embryonic stem cells,” Reproductive Biology and Endocrinology, vol. 2, article 41, 2004. View at Google Scholar
  11. R. Ratnasabapathy and W. S. Dhillo, “The effects of kisspeptin in human reproductive function—therapeutic implications,” Current Drug Targets, vol. 14, pp. 365–371, 2013. View at Google Scholar
  12. J.-H. Lee, M. E. Miele, D. J. Hicks et al., “KiSS-1, a novel human malignant melanoma metastasis-suppressor gene,” Journal of the National Cancer Institute, vol. 88, no. 23, pp. 1731–1737, 1996. View at Google Scholar · View at Scopus
  13. F. Wahab, R. Bano, S. Jabeen, S. Irfan, and M. Shahab, “Effect of peripheral kisspeptin administration on adiponectin, leptin, and resistin secretion under fed and fasting conditions in the adult male rhesus monkey (Macaca mulatta),” Hormone and Metabolic Research, vol. 42, no. 8, pp. 570–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. J. Kriegsfeld, “Circadian regulation of kisspeptin in female reproductive functioning,” Advances in Experimental Medicine and Biology, vol. 784, pp. 385–410, 2013. View at Publisher · View at Google Scholar
  15. V. Simonneaux, L. Ansel, F. G. Revel, P. Klosen, P. Pévet, and J. D. Mikkelsen, “Kisspeptin and the seasonal control of reproduction in hamsters,” Peptides, vol. 30, no. 1, pp. 146–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Ohtaki, Y. Shintani, S. Honda et al., “Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor,” Nature, vol. 411, no. 6837, pp. 613–617, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kotani, M. Detheux, A. Vandenbogaerde et al., “The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54,” Journal of Biological Chemistry, vol. 276, no. 37, pp. 34631–34636, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. I. Muir, L. Chamberlain, N. A. Elshourbagy et al., “AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1,” Journal of Biological Chemistry, vol. 276, no. 31, pp. 28969–28975, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. Caraty, A. Leprince, J. Lomet et al., “Kp-16 and Kp-13 are the most abundant kisspeptin isoforms present in sheep hypothalamus,” Endocrine Reviews, vol. 33, 2012, 03_MeetingAbstracts: SAT-507. View at Google Scholar
  20. Z. Fiorini and C. L. Jasoni, “A novel developmental role for kisspeptin in the growth of gonadotrophin-releasing hormone neurites to the median eminence in the mouse,” Journal of Neuroendocrinology, vol. 22, no. 10, pp. 1113–1125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Darmon, J. Bottenstein, and G. Sato, “Neural differentiation following culture of embryonal carcinoma cells in a serum-free defined medium,” Developmental Biology, vol. 85, no. 2, pp. 463–473, 1981. View at Google Scholar · View at Scopus
  22. S.-C. Zhang, M. Wernig, I. D. Duncan, O. Brüstle, and J. A. Thomson, “In vitro differentiation of transplantable neural precursors from human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 12, pp. 1129–1133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Perrier, V. Tabar, T. Barberi et al., “Derivation of midbrain dopamine neurons from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12543–12548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Jessell, “Neuronal specification in the spinal cord: inductive signals and transcriptional codes,” Nature Reviews Genetics, vol. 1, no. 1, pp. 20–29, 2000. View at Google Scholar · View at Scopus
  25. N. Cao, J. Liao, Z. Liu et al., “In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes,” Cell Research, vol. 21, no. 9, pp. 1316–1331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. A. VandeVoort, D. L. Hill, C. L. Chaffin, and A. J. Conley, “Ethanol, acetaldehyde, and estradiol affect growth and differentiation of Rhesus monkey embryonic stem cells,” Alcoholism, vol. 35, no. 8, pp. 1534–1540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. J. Porrino, R. S. Burns, A. M. Crane, E. Palombo, I. J. Kopin, and L. Sokoloff, “Local cerebral metabolic effects of L-dopa therapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 16, pp. 5995–5999, 1987. View at Google Scholar · View at Scopus
  28. D. R. Cornblath, A. L. Dellon, and S. E. MacKinnon, “Spontaneous diabetes mellitus in a rhesus monkey: neurophysiological studies,” Muscle and Nerve, vol. 12, no. 3, pp. 233–235, 1989. View at Google Scholar · View at Scopus
  29. C. K. Rokkas, S. Sundaresan, T. A. Shuman et al., “Profound systemic hypothermia protects the spinal cord in a primate model of spinal cord ischemia,” Journal of Thoracic and Cardiovascular Surgery, vol. 106, no. 6, pp. 1024–1035, 1993. View at Google Scholar · View at Scopus
  30. G. B. Baskin, M. Ratterree, B. B. Davison et al., “Genetic galactocerebrosidase deficiency (globoid cell leukodystrophy, Krabbe disease) in rhesus monkeys (Macaca mulatta),” Laboratory Animal Science, vol. 48, no. 5, pp. 476–482, 1998. View at Google Scholar · View at Scopus
  31. E. Ziegler, T. Olbrich, G. Emons, and C. Grundker, “Antiproliferative effects of kisspeptin 10 depend on artificial GPR54 (KISS1R) expression levels,” Oncology Reports, vol. 29, no. 2, pp. 549–554, 2013. View at Google Scholar
  32. R. Chianese, V. Ciaramella, S. Fasano, R. Pierantoni, and R. Meccariello, “Kisspeptin receptor, GPR54, as a candidate for the regulation of testicular activity in the frog Rana esculenta,” Biology of Reproduction, vol. 88, no. 3, p. 73, 2013. View at Google Scholar
  33. J.-M. Navenot, Z. Wang, M. Chopin, N. Fujii, and S. C. Peiper, “Kisspeptin-10-induced signaling of GPR54 negatively regulates chemotactic responses mediated by CXCR4: a potential mechanism for the metastasis suppressor activity of kisspeptins,” Cancer Research, vol. 65, no. 22, pp. 10450–10456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J.-M. Navenot, N. Fujii, and S. C. Peiper, “Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis,” Molecular Pharmacology, vol. 75, no. 6, pp. 1300–1306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S.-G. Cho, Z. Yi, X. Pang et al., “Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated VEGF expression and FAK/Rho GTPase activation,” Cancer Research, vol. 69, no. 17, pp. 7062–7070, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Q. Doe, “Neural stem cells: balancing self-renewal with differentiation,” Development, vol. 135, no. 9, pp. 1575–1587, 2008. View at Publisher · View at Google Scholar · View at Scopus