Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 146092, 7 pages
http://dx.doi.org/10.1155/2013/146092
Research Article

Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

1Department of Chemistry, Faculty of Science, Anadolu University, 26470 Eskisehir, Turkey
2Chemistry Program, Izmir Vocational School, Dokuz Eylül University, Buca, 35160 Izmir, Turkey
3Department of Chemistry, Faculty of Science, Karabük University, Karabük, Turkey

Received 22 April 2013; Accepted 22 May 2013

Academic Editors: A. Avramopoulos, D. Dondi, and C. Wu

Copyright © 2013 Murat Erdem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. T. Tsai, K. J. Hsien, H. C. Hsu, C. M. Lin, K. Y. Lin, and C. H. Chiu, “Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution,” Bioresource Technology, vol. 99, no. 6, pp. 1623–1629, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Schiewer and S. B. Patil, “Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics,” Bioresource Technology, vol. 99, no. 6, pp. 1896–1903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Johns, W. E. Marshall, and C. A. Toles, “Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics,” Journal of Chemical Technology and Biotechnology, vol. 71, no. 2, pp. 131–140, 1998. View at Google Scholar
  4. N. Kannan and G. Rengasamy, “Comparison of cadmium ion adsorption on various activated carbons,” Water, Air, and Soil Pollution, vol. 163, no. 1–4, pp. 185–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Velicu, H. Fu, R. P. S. Suri, and K. Woods, “Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater,” Journal of Hazardous Materials, vol. 148, no. 3, pp. 599–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Tay, S. Ucar, and S. Karagöz, “Preparation and characterization of activated carbon from waste biomass,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 481–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kobya, E. Demirbas, E. Senturk, and M. Ince, “Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone,” Bioresource Technology, vol. 96, no. 13, pp. 1518–1521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, and R. J. Portier, “Adsorption of metal ions by pecan shell-based granular activated carbons,” Bioresource Technology, vol. 89, no. 2, pp. 115–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kikuchi, Q. Qian, M. Machida, and H. Tatsumoto, “Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution,” Carbon, vol. 44, no. 2, pp. 195–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Issabayeva, M. K. Aroua, and N. M. N. Sulaiman, “Removal of lead from aqueous solutions on palm shell activated carbon,” Bioresource Technology, vol. 97, no. 18, pp. 2350–2355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Ayyappan, A. C. Sophia, K. Swaminathan, and S. Sandhya, “Removal of Pb(II) from aqueous solution using carbon derived from agricultural wastes,” Process Biochemistry, vol. 40, no. 3-4, pp. 1293–1299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Krishnan and T. S. Anirudhan, “Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith,” Industrial and Engineering Chemistry Research, vol. 41, no. 20, pp. 5085–5093, 2002. View at Google Scholar · View at Scopus
  13. K. Kadirvelu and C. Namasivayam, “Agricultural by-product as metal adsorbent: sorption of lead(II) from aqueous solution onto coirpith carbon,” Environmental Technology, vol. 21, no. 10, pp. 1091–1097, 2000. View at Google Scholar · View at Scopus
  14. Ö. Gerçel and H. F. Gerçel, “Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida,” Chemical Engineering Journal, vol. 132, no. 1–3, pp. 289–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Momčilović, M. Purenović, A. Bojić, A. Zarubica, and M. Randelovid, “Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon,” Desalination, vol. 276, no. 1–3, pp. 53–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. R. Radovic, I. F. Silva, J. I. Ume, J. A. Menéndez, C. A. Leon Y Leon, and A. W. Scaroni, “An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons,” Carbon, vol. 35, no. 9, pp. 1339–1348, 1997. View at Google Scholar · View at Scopus
  17. D. Savova, N. Petrov, M. F. Yardim et al., “The influence of the texture and surface properties of carbon adsorbents obtained from biomass products on the adsorption of manganese ions from aqueous solution,” Carbon, vol. 41, no. 10, pp. 1897–1903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Lagergen, “Zur theorie der sogenannten adsorption geloster stoffe,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1898. View at Google Scholar
  19. Y. S. Ho and G. McKay, “Kinetic models for the sorption of dye from aqueous solution by wood,” Process Safety and Environmental Protection, vol. 76, no. 2, pp. 183–191, 1998. View at Google Scholar · View at Scopus
  20. W. J. Weber and J. C. Morris, “Kinetics of adsorption on carbon from solution,” Journal of the Sanitary Engineering Division, vol. 89, no. 2, pp. 31–60, 1963. View at Google Scholar
  21. X. Y. Yu, T. Luo, Y. X. Zhang et al., “Adsorption of lead(II) on O2-plasma-oxidized multiwalled carbon nanotubes: thermodynamics, kinetics, and desorption,” ACS Applied Materials and Interfaces, vol. 3, no. 7, pp. 2585–2593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Z. Chowdhury, S. M. Zain, R. A. Khan, R. F. Rafique, and K. Khalid, “Batch and fixed bed adsorption studies of lead (II) cations from aqueous solutions onto granular activated carbon derived from mangostana garcinia shell,” Bioresources, vol. 7, no. 3, pp. 2895–2915, 2012. View at Google Scholar
  23. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” The Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at Google Scholar · View at Scopus
  24. H. M. F. Freundlich, “Over the adsorption in solution,” The Journal of Physical Chemistry, vol. 57, pp. 385–471, 1906. View at Google Scholar
  25. A. W. Adamson, Physical Chemistry of Surface, Interscience Publication, New York, NY, USA, 1960.