Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 154564, 13 pages
http://dx.doi.org/10.1155/2013/154564
Review Article

Tissue Engineering of Urinary Bladder and Urethra: Advances from Bench to Patients

1Centre LOEX de l’Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
2Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1K 7P4

Received 29 August 2013; Accepted 29 September 2013

Academic Editors: P. De Coppi and S. Wang

Copyright © 2013 Hazem Orabi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. I. Chung, G. Sommer, and J. D. Brooks, “Anatomy of the lower urinary tract and male genitalia,” in Campbell-Walsh Urology, A. J. Wein, L. R. Kavoussi, A. C. Novick, A. W. Partin, and C. A. Peters, Eds., chapter 2, pp. 33–70, Saunders, Philadelphia, Pa, USA, 10th edition, 2012. View at Google Scholar
  2. K. A. Burbige and T. W. Hensle, “The complications of urinary tract reconstruction,” Journal of Urology, vol. 136, no. 1, part 2, pp. 292–297, 1986. View at Google Scholar · View at Scopus
  3. V. M. Vemulakonda, T. S. Lendvay, M. Shnorhavorian et al., “Metastatic adenocarcinoma after augmentation gastrocystoplasty,” Journal of Urology, vol. 179, no. 3, pp. 1094–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. S. McDougal, “Metabolic complications of urinary intestinal diversion,” Journal of Urology, vol. 147, no. 5, pp. 1199–1208, 1992. View at Google Scholar · View at Scopus
  5. A. R. Mundy and D. E. Nurse, “Calcium balance, growth and skeletal mineralisation in patients with cystoplasties,” The British Journal of Urology, vol. 69, no. 3, pp. 257–259, 1992. View at Google Scholar · View at Scopus
  6. B. Ali-El-Dein, N. El-Tabey, M. Abdel-Latif, M. Abdel-Rahim, and M. S. El-Bahnasawy, “Late uro-ileal cancer after incorporation of ileum into the urinary tract,” Journal of Urology, vol. 167, no. 1, pp. 84–88, 2002. View at Google Scholar · View at Scopus
  7. S. D. Woodhams, T. J. Greenwell, T. Smalley, and A. R. Mundy, “Factors causing variation in urinary N-nitrosamine levels in enterocystoplasties,” The British Journal of Urology International, vol. 88, no. 3, pp. 187–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. W. R. Cross, D. F. M. Thomas, and J. Southgate, “Tissue engineering and stem cell research in urology,” The British Journal of Urology International, vol. 92, no. 2, pp. 165–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. McAninch, “Urethral reconstruction: a continuing challenge,” Journal of Urology, vol. 173, no. 1, p. 7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Mundy, “The long-term results of skin inlay urethroplasty,” The British Journal of Urology, vol. 75, no. 1, pp. 59–61, 1995. View at Google Scholar · View at Scopus
  11. N. Dublin and L. H. Stewart, “Oral complications after buccal mucosal graft harvest for urethroplasty,” The British Journal of Urology International, vol. 94, no. 6, pp. 867–869, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Barbagli, E. Palminteri, S. de Stefani, and M. Lazzeri, “Penile urethroplasty: techniques and outcomes using buccal mucosa grafts,” Contemporary Urology, vol. 18, no. 3, pp. 25–33, 2006. View at Google Scholar · View at Scopus
  13. B. Young, J. Lowe, A. Stevens, J. Heath, and P. Deakin, Wheater's Functional Histology: A Text and Colour Atlas, Churchill Livingstone, New York, NY, USA, 2006.
  14. R. O. Hynes, “The extracellular matrix: not just pretty fibrils,” Science, vol. 326, no. 5957, pp. 1216–1219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. C. B. Wilson, J. Leopard, D. A. Cheresh, and R. M. Nakamura, “Extracellular matrix and integrin composition of the normal bladder wall,” World Journal of Urology, vol. 14, supplement 1, pp. S30–S37, 1996. View at Google Scholar · View at Scopus
  16. G. Apodaca, “The uroepithelium: not just a passive barrier,” Traffic, vol. 5, no. 3, pp. 117–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Lewis, “Everything you wanted to know about the bladder epithelium but were afraid to ask,” The American Journal of Physiology—Renal Physiology, vol. 278, no. 6, pp. F867–F874, 2000. View at Google Scholar · View at Scopus
  18. H. E. Young and A. C. Black Jr., “Adult stem cells,” The Anatomical Record A, vol. 276, no. 1, pp. 75–102, 2004. View at Publisher · View at Google Scholar
  19. B. G. Cilento, M. R. Freeman, F. X. Schneck, A. B. Retik, and A. Atala, “Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro,” Journal of Urology, vol. 152, no. 2, pp. 665–670, 1994. View at Google Scholar · View at Scopus
  20. U. Nagele, S. Maurer, G. Feil et al., “In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings,” European Urology, vol. 54, no. 6, pp. 1414–1422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Zhang, E. McNeill, H. Tian et al., “Urine derived cells are a potential source for urological tissue reconstruction,” Journal of Urology, vol. 180, no. 5, pp. 2226–2233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Fu, C. L. Deng, W. Liu, and Y. L. Cao, “Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix,” The British Journal of Urology International, vol. 99, no. 5, pp. 1162–1165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Bhargava, J. M. Patterson, R. D. Inman, S. MacNeil, and C. R. Chapple, “Tissue-engineered buccal mucosa urethroplasty—clinical outcomes,” European Urology, vol. 53, no. 6, pp. 1263–1271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Atala, F. K. Kasper, and A. G. Mikos, “Engineering complex tissues,” Science Translational Medicine, vol. 4, no. 160, Article ID 160rv12, 2012. View at Publisher · View at Google Scholar
  25. N. F. Davis, B. B. McGuire, A. Callanan, H. D. Flood, and T. M. McGloughlin, “Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery,” Journal of Urology, vol. 184, no. 6, pp. 2246–2253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. F. M. Watt and B. L. M. Hogan, “Out of eden: stem cells and their niches,” Science, vol. 287, no. 5457, pp. 1427–1430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Subramaniam, J. Hinley, J. Stahlschmidt, and J. Southgate, “Tissue engineering potential of urothelial cells from diseased bladders,” Journal of Urology, vol. 186, no. 5, pp. 2014–2020, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. G. Dozmorov, B. P. Kropp, R. E. Hurst, E. Y. Cheng, and H. K. Lin, “Differentially expressed gene networks in cultured smooth muscle cells from normal and neuropathic bladder,” Journal of Smooth Muscle Research, vol. 43, no. 2, pp. 55–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Mauney, A. Ramachandran, R. N. Yu, G. Q. Daley, R. M. Adam, and C. R. Estrada, “All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms,” PLoS ONE, vol. 5, no. 7, Article ID e11513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Tian, S. Bharadwaj, Y. Liu, P. X. Ma, A. Atala, and Y. Zhang, “Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering,” Tissue Engineering A, vol. 16, no. 5, pp. 1769–1779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. K. Sharma, P. V. Hota, D. J. Matoka et al., “Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films,” Biomaterials, vol. 31, no. 24, pp. 6207–6217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Orabi, G. Lin, L. Ferretti, C. Lin, and T. F. Lue, “Scaffoldless tissue engineering of stem cell derived cavernous tissue for treatment of erectile function,” Journal of Sexual Medicine, vol. 9, no. 6, pp. 1522–1534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Brzoska, H. Geiger, S. Gauer, and P. Baer, “Epithelial differentiation of human adipose tissue-derived adult stem cells,” Biochemical and Biophysical Research Communications, vol. 330, no. 1, pp. 142–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Liu, J. Huang, T. Lin, C. Zhang, and X. Yin, “Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 931–936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. S. Jack, R. Zhang, M. Lee, Y. Xu, B. M. Wu, and L. V. Rodríguez, “Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite,” Biomaterials, vol. 30, no. 19, pp. 3259–3270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bharadwaj, G. Liu, Y. Shi et al., “Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology,” Stem Cells, vol. 31, no. 9, pp. 1840–1856, 2013. View at Publisher · View at Google Scholar
  37. S. Wu, Y. Liu, S. Bharadwaj, A. Atala, and Y. Zhang, “Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering,” Biomaterials, vol. 32, no. 5, pp. 1317–1326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. B. S. Kim, C. E. Baez, and A. Atala, “Biomaterials for tissue engineering,” World Journal of Urology, vol. 18, no. 1, pp. 2–9, 2000. View at Google Scholar · View at Scopus
  39. R. A. Santucci and T. D. Barber, “Resorbable extra cellular matrix grafts in urologic reconstruction,” International Brazilian Journal of Urology, vol. 31, no. 3, pp. 192–203, 2005. View at Google Scholar · View at Scopus
  40. D. Eberli, L. F. Filho, A. Atala, and J. J. Yoo, “Composite scaffolds for the engineering of hollow organs and tissues,” Methods, vol. 47, no. 2, pp. 109–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. I. Jeong, B. S. Kim, Y. M. Lee, K. J. Ihn, S. H. Kim, and Y. H. Kim, “Morphology of elastic poly(L-lactide-co-ε-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds,” Biomacromolecules, vol. 5, no. 4, pp. 1303–1309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. I. Jeong, B. S. Kim, S. W. Kang et al., “In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-ε-caprolactone) scaffolds,” Biomaterials, vol. 25, no. 28, pp. 5939–5946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. W. S. Hayami, D. C. Surrao, S. D. Waldman, and B. G. Amsden, “Design and characterization of a biodegradable composite scaffold for ligament tissue engineering,” Journal of Biomedical Materials Research A, vol. 92, no. 4, pp. 1407–1420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. F. Badylak, “Xenogeneic extracellular matrix as a scaffold for tissue reconstruction,” Transplant Immunology, vol. 12, no. 3-4, pp. 367–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Feil, M. Christ-Adler, S. Maurer et al., “Investigations of urothelial cells seeded on commercially available small intestine submucosa,” European Urology, vol. 50, no. 6, pp. 1330–1337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Bouhout, E. Perron, R. Gauvin et al., “In vitro reconstruction of an autologous, watertight, and resistant vesical equivalent,” Tissue Engineering A, vol. 16, no. 5, pp. 1539–1548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Bouhout, R. Gauvin, L. Gibot, D. Aubé, and S. Bolduc, “Bladder substitute reconstructed in a physiological pressure environment,” Journal of Pediatric Urology, vol. 7, no. 3, pp. 276–282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Cattan, G. Bernard, A. Rousseau et al., “Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft,” European Urology, vol. 60, no. 6, pp. 1291–1298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Imbeault, G. Bernard, G. Ouellet, S. Bouhout, S. Carrier, and S. Bolduc, “Surgical option for the correction of Peyronie's disease: an autologous tissue-engineered endothelialized graft,” Journal of Sexual Medicine, vol. 8, no. 11, pp. 3227–3235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Magnan, F. Berthod, M. Champigny, F. Soucy, and S. Bolduc, “In vitro reconstruction of a tissue-engineered endothelialized bladder from a single porcine biopsy,” Journal of Pediatric Urology, vol. 2, no. 4, pp. 261–270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Magnan, P. Lévesque, R. Gauvin et al., “Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures,” Tissue Engineering A, vol. 15, no. 1, pp. 197–202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Ouellet, J. Dubé, R. Gauvin, V. Laterreur, S. Bouhout, and S. Bolduc, “Production of an optimized tissue-engineered pig connective tissue for the reconstruction of the urinary tract,” Tissue Engineering A, vol. 17, no. 11-12, pp. 1625–1633, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. F. A. Auger, M. Rémy-Zolghadri, G. Grenier, and L. Germain, “A truly new approach for tissue engineering: the LOEX self-assembly technique,” Ernst Schering Research Foundation Workshop, no. 35, pp. 73–88, 2002. View at Google Scholar · View at Scopus
  54. F. A. Auger, F. Berthod, V. Moulin, R. Pouliot, and L. Germain, “Tissue-engineered skin substitutes: from in vitro constructs to in vivo applications,” Biotechnology and Applied Biochemistry, vol. 39, part 3, pp. 263–275, 2004. View at Google Scholar · View at Scopus
  55. N. L'Heureux, J. C. Stoclet, F. A. Auger, G. J. Lagaud, L. Germain, and R. Andriantsitohaina, “A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses,” The FASEB Journal, vol. 15, no. 2, pp. 515–524, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Germain, M. Rouabhia, R. Guignard, L. Carrier, V. Bouvard, and F. A. Auger, “Improvement of human keratinocyte isolation and culture using thermolysin,” Burns, vol. 19, no. 2, pp. 99–104, 1993. View at Google Scholar · View at Scopus
  57. S. Chabaud, T. L. Marcoux, M. P. Deschênes-Rompré et al., “Lysophosphatidic acid enhances collagen deposition and matrix thickening in engineered tissue,” Journal of Tissue Engineering and Regenerative Medicine, 2013. View at Publisher · View at Google Scholar
  58. A. Rousseau, J. Fradette, G. Bernard, R. Gauvin, V. Laterreur, and S. Bolduc, “Adipose-derived stromal cells for the reconstruction of a human vesical equivalent,” Journal of Tissue Engineering and Regenerative Medicine, 2013. View at Publisher · View at Google Scholar
  59. A. Mangera and C. R. Chapple, “Tissue engineering in urethral reconstruction—an update,” Asian Journal of Andrology, vol. 15, no. 1, pp. 89–92, 2013. View at Publisher · View at Google Scholar
  60. B. P. Kropp, J. K. Ludlow, D. Spicer et al., “Rabbit urethral regeneration using small intestinal submucosa onlay grafts,” Urology, vol. 52, no. 1, pp. 138–142, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. A. W. El-Kassaby, A. B. Retik, J. J. Yoo, and A. Atala, “Urethral stricture repair with an off-the-shelf collagen matrix,” Journal of Urology, vol. 169, no. 1, pp. 170–173, 2003. View at Google Scholar · View at Scopus
  62. A. El Kassaby, T. AbouShwareb, and A. Atala, “Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures,” Journal of Urology, vol. 179, no. 4, pp. 1432–1436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Atala, L. Guzman, and A. B. Retik, “A novel inert collagen matrix for hypospadias repair,” Journal of Urology, vol. 162, no. 3, part 2, pp. 1148–1151, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Fiala, A. Vidlar, R. Vrtal, K. Belej, and V. Student, “Porcine small intestinal submucosa graft for repair of anterior urethral strictures,” European Urology, vol. 51, no. 6, pp. 1702–1708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. I. I. Donkov, A. Bashir, C. H. G. Elenkov, and P. K. Panchev, “Dorsal onlay augmentation urethroplasty with small intestinal submucosa: modified Barbagli technique for strictures of the bulbar urethra,” International Journal of Urology, vol. 13, no. 11, pp. 1415–1417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Palminteri, E. Berdondini, F. Fusco, C. de Nunzio, and A. Salonia, “Long-term results of small intestinal submucosa graft in bulbar urethral reconstruction,” Urology, vol. 79, no. 3, pp. 695–701, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. R. E. de Filippo, J. J. Yoo, and A. Atala, “Urethral replacement using cell seeded tubularized collagen matrices,” Journal of Urology, vol. 168, no. 4, part 2, pp. 1789–1793, 2002. View at Google Scholar · View at Scopus
  68. H. Orabi, T. AbouShwareb, Y. Zhang, J. J. Yoo, and A. Atala, “Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study,” European Urology, vol. 63, no. 3, pp. 531–538, 2013. View at Publisher · View at Google Scholar
  69. A. Raya-Rivera, D. R. Esquiliano, J. J. Yoo, E. Lopez-Bayghen, S. Soker, and A. Atala, “Tissue-engineered autologous urethras for patients who need reconstruction: an observational study,” The Lancet, vol. 377, no. 9772, pp. 1175–1182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Fossum, J. Svensson, G. Kratz, and A. Nordenskjöld, “Autologous in vitro cultured urothelium in hypospadias repair,” Journal of Pediatric Urology, vol. 3, no. 1, pp. 10–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Imbeault, G. Bernard, A. Rousseau et al., “An endothelialized urothelial cell-seeded tubular graft for urethral replacement,” Canadian Urological Association Journal, vol. 7, no. 1-2, pp. E4–E9, 2013. View at Publisher · View at Google Scholar
  72. J. Hodson and R. S. Cotran, “Reflux nephropathy,” Hospital Practice, vol. 17, no. 4, pp. 133–135, 138–141, 148–156, 1982. View at Google Scholar · View at Scopus
  73. W. E. Bradley, G. W. Timm, and F. B. Scott, “Innervation of the detrusor muscle and urethra,” Urologic Clinics of North America, vol. 1, no. 1, pp. 3–27, 1974. View at Google Scholar · View at Scopus
  74. N. Kikuno, K. Kawamoto, H. Hirata et al., “Nerve growth factor combined with vascular endothelial growth factor enhances regeneration of bladder acellular matrix graft in spinal cord injury-induced neurogenic rat bladder,” The British Journal of Urology International, vol. 103, no. 10, pp. 1424–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. B. P. Kropp, E. Y. Cheng, H. K. Lin, and Y. Zhang, “Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa,” Journal of Urology, vol. 172, no. 4, pp. 1710–1713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. H. J. Piechota, S. E. Dahms, L. S. Nunes, R. Dahiya, T. F. Lue, and E. A. Tanagho, “In vitro functional properties of the rat bladder regenerated by the bladder acellular matrix graft,” Journal of Urology, vol. 159, no. 5, pp. 1717–1724, 1998. View at Google Scholar · View at Scopus
  77. J. Wefer, K. Sievert, N. Schlote et al., “Time dependent smooth muscle regeneration and maturation in a bladder acellular matrix graft: histological studies and in vivo functional evaluation,” Journal of Urology, vol. 165, no. 5, part 1, pp. 1755–1759, 2001. View at Google Scholar · View at Scopus
  78. J. Adamowicz, K. Juszczak, A. Bajek et al., “Morphological and urodynamic evaluation of urinary bladder wall regeneration: muscles guarantee contraction but not proper function a rat model research study,” Transplantation Proceedings, vol. 44, no. 5, pp. 1429–1434, 2012. View at Publisher · View at Google Scholar
  79. F. Oberpenning, J. Meng, J. J. Yoo, and A. Atala, “De novo reconstitution of a functional mammalian urinary bladder by tissue engineering,” Nature Biotechnology, vol. 17, no. 2, pp. 149–155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, “Tissue-engineered autologous bladders for patients needing cystoplasty,” The Lancet, vol. 367, no. 9518, pp. 1241–1246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. J. Yoo, J. Olson, A. Atala, and B. Kim, “Regenerative medicine strategies for treating neurogenic bladder,” International Neurourology Journal, vol. 15, no. 3, pp. 109–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. M. E. Kreft, S. Hudoklin, K. Jezernik, and R. Romih, “Formation and maintenance of blood-urine barrier in urothelium,” Protoplasma, vol. 246, no. 1–4, pp. 3–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Yoshimura, T. Shigeura, D. Matsumoto et al., “Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates,” Journal of Cellular Physiology, vol. 208, no. 1, pp. 64–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. T. G. Ebrahimian, C. Squiban, T. Roque et al., “Plasminogen activator inhibitor-1 controls bone marrow-derived cells therapeutic effect through MMP9 signaling: role in physiological and pathological wound healing,” Stem Cells, vol. 30, no. 7, pp. 1436–1446, 2012. View at Publisher · View at Google Scholar
  85. R. Salcedo, K. Wasserman, H. A. Young et al., “Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells. In vivo neovascularization induced by stromal-derived factor-1α,” The American Journal of Pathology, vol. 154, no. 4, pp. 1125–1135, 1999. View at Google Scholar · View at Scopus
  86. T. G. Ebrahimian, F. Pouzoulet, C. Squiban et al., “Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 4, pp. 503–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Blasi, C. Martino, L. Balducci et al., “Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential,” Vascular Cell, vol. 3, no. 1, article 5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. H. K. Park, K. S. Cho, H. Y. Park et al., “Adipose-derived stromal cells inhibit allergic airway inflammation in mice,” Stem Cells and Development, vol. 19, no. 11, pp. 1811–1818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. W. A. Farhat, “Bladder regeneration: great potential but challenges remain,” Regenerative Medicine, vol. 6, no. 5, pp. 537–538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Bharadwaj, G. Liu, Y. Shi et al., “Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering,” Tissue Engineering A, vol. 17, no. 15-16, pp. 2123–2132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. D. M. Delo, P. de Coppi, G. Bartsch Jr., and A. Atala, “Amniotic fluid and placental stem cells,” Methods in Enzymology, vol. 419, pp. 426–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Ghionzoli, A. Repele, L. Sartiani et al., “Human amniotic fluid stem cell differentiation along smooth muscle lineage,” The FASEB Journal, 2013. View at Publisher · View at Google Scholar
  93. S. S. Chung and C. J. Koh, “Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling,” In Vitro Cellular & Developmental Biology—Animal, vol. 49, no. 10, pp. 746–751, 2013. View at Publisher · View at Google Scholar
  94. R. Subramaniam, A. M. Turner, S. K. Abbas, D. F. Thomas, and J. Southgate, “Seromuscular grafts for bladder reconstruction: extra-luminal demucosalisation of the bowel,” Urology, vol. 80, no. 5, pp. 1147–1150, 2012. View at Publisher · View at Google Scholar