Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 170291, 10 pages
http://dx.doi.org/10.1155/2013/170291
Research Article

The Sacred Mountain of Varallo in Italy: Seismic Risk Assessment by Acoustic Emission and Structural Numerical Models

Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, 10129 Torino, Italy

Received 26 July 2013; Accepted 1 September 2013

Academic Editors: D. G. Aggelis, N. Alver, and H. K. Chai

Copyright © 2013 Alberto Carpinteri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. de Filippis, Sacro Monte of Varallo, Borgosesia, 2009.
  2. G. Lacidogna, A. Manuello, G. Niccolini, and A. Carpinteri, “Acoustic emission monitoring of Italian historical buildings and the case study of the Athena temple in Syracuse,” Architectural Science Review, 2012. View at Google Scholar
  3. A. Carpinteri, S. Invernizzi, G. Lacidogna, and F. Accornero, “Acoustic emission monitoring of frescos degradation in a XVIIth century chapel of the “Sacred Mountain of Varallo” (Italy),” in Proceedings of the 8th International Conference on Structural Analysis of Historical Constructions, J. Jasinko, Ed., Wroclaw, Poland, 2012.
  4. A. Anzani, L. Binda, A. Carpinteri, G. Lacidogna, and A. Manuello, “Evaluation of the repair on multiple leaf stone masonry by acoustic emission,” Materials and Structures, vol. 41, no. 6, pp. 1169–1189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Carpinteri, G. Lacidogna, S. Invernizzi, A. Manuello, and L. Binda, “Stability of the vertical bearing structures of the Syracuse Cathedral: experimental and numerical evaluation,” Materials and Structures, vol. 42, no. 7, pp. 877–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Carpinteri and G. Lacidogna, “Structural monitoring and integrity assessment of medieval towers,” Journal of Structural Engineering, vol. 132, no. 11, pp. 1681–1690, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Carpinteri, G. Lacidogna, and G. Niccolini, “Acoustic emission monitoring of medieval towers considered as sensitive earthquake receptors,” Natural Hazards and Earth System Science, vol. 7, no. 2, pp. 251–261, 2007. View at Google Scholar
  8. A. Carpinteri, G. Lacidogna, and N. Pugno, “Structural damage diagnosis and life-time assessment by acoustic emission monitoring,” Engineering Fracture Mechanics, vol. 74, no. 1-2, pp. 273–289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Carpinteri and G. Lacidogna, “Damage evaluation of three masonry towers by acoustic emission,” Engineering Structures, vol. 29, no. 7, pp. 1569–1579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Niccolini, A. Carpinteri, G. Lacidogna, and A. Manuello, “Acoustic emission monitoring of the Syracuse Athena temple: scale invariance in the timing of ruptures,” Physical Review Letters, vol. 106, no. 10, Article ID 108503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Richter, Elementary Seismology, W. H. Freeman, San Francisco, Calif, USA, 1958.
  12. A. Carpinteri, G. Lacidogna, and N. Pugno, “Richter's laws at the laboratory scale interpreted by acoustic emission,” Magazine of Concrete Research, vol. 58, no. 9, pp. 619–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. H. Scholz, “The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes,” Bulletin of the Seismological Society of America, vol. 58, pp. 399–415, 1968. View at Google Scholar
  14. G. P. Gregori and G. Paparo, “Acoustic emission: a diagnostic tool for environomental sciences and for non destructive tests (with a potential application to gravitational antennas),” in Meteorological and Geophysical Fluid Dynamics, Schroeder, Bremen, Germany, 2005. View at Google Scholar
  15. G. P. Gregori, G. Paparo, M. Poscolieri, and A. Zanini, “Acoustic emission and released seismic energy,” Natural Hazards and Earth System Science, vol. 5, no. 6, pp. 777–782, 2005. View at Google Scholar · View at Scopus
  16. B. A. Bolt, Earthquakes, W. H. Freeman, San Francisco, Calif, USA, 1978.
  17. P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Physical Review Letters, vol. 50, no. 5, pp. 346–349, 1983. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Aggelis, “Classification of cracking mode in concrete by acoustic emission parameters,” Mechanics Research Communications, vol. 38, no. 3, pp. 153–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. G. Aggelis, A. C. Mpalaskas, D. Ntalakas, and T. E. Matikas, “Effect of wave distortion on acoustic emission characterization of cementitious materials,” Construction and Building Materials, vol. 35, pp. 183–190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. D. G. Aggelis, T. Shiotani, A. Papacharalampopoulos, and D. Polyzos, “The influence of propagation path on elastic waves as measured by acoustic emission parameters,” Structural Health Monitoring, vol. 11, no. 3, pp. 359–366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Lamb, “On waves in an elastic plate,” Proceedings of the Royal Society A, vol. 93, no. 648, pp. 114–128, 1917. View at Google Scholar
  22. E. N. Landis and S. P. Shah, “Frequency-dependent stress wave attenuation in cement-based materials,” Journal of Engineering Mechanics, vol. 121, pp. 737–743, 1995. View at Google Scholar
  23. Decreto del Ministero delle Infrastrutture 14 Gennaio 2008, Norme Tecniche per le Costruzioni. Gazzetta Ufficiale della Repubblica Italiana no. 29 del 4 Febbraio 2008 (Italian).
  24. J. Maine, DIANA. Finite Element Analysis User's Manual. Release 9.4.4, TNO DIANA bv, Delft, The Netherlands, 2012.