Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 247035, 8 pages
http://dx.doi.org/10.1155/2013/247035
Review Article

Advances in Energy Conservation of China Steel Industry

State Environmental Protection Key Laboratory of Eco-Industry, Institute of Thermal and Environmental Engineering, Northeastern University, Shenyang, Liaoning 118019, China

Received 18 January 2013; Accepted 5 February 2013

Academic Editors: A. Greco, A. J. N. Khalifa, and A. Parlak

Copyright © 2013 Wenqiang Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Vehec, Technology Roadmap Research Program for the Steel Industry, American Iron and Steel Institute, Washington, DC, USA, 2010.
  2. Z. W. Lu and A. G. Xie, “Analysis of overall energy intensity of Chinese steel industry,” in Proceedings of the International Conference on Energy and Environment, pp. 198–202, Begell House Inc., New York, NY, USA, 1996.
  3. Q. Zhai and Z. Lu, “Prediction on the energy intensity of chinese iron and steel enterprises,” in Proceedings of the International Conference on Energy and Environment, pp. 47–51, China Machine Press, Shanghai, China, May 1998. View at Scopus
  4. Z. W. Lu, Energy Utilization in Metallurgical Industry, Metallurgical Industry Press, Beijing, China, 1986.
  5. Z. W. Lu and J. J. Cai, Foundations of Systems Energy Conservation, Northeastern University Press, Shenyang, China, 2010.
  6. X. P. Zhang and Q. Y. Zhang, “Development trend of world steel industry and the influence on China’s steel industry,” World Regional Studies, vol. 14, no. 2, pp. 80–86, 2005. View at Google Scholar
  7. Q. Zhang, J. J. Cai, G. J. Duan, J. J. Wang, and H. Q. Liu, “System energy conservation method and technical analyses of iron and steel industry,” Energy Conservation, no. 1, pp. 35–37, 2006 (Chinese). View at Google Scholar
  8. J. Zhang and G. Wang, “Energy saving technologies and productive efficiency in the Chinese iron and steel sector,” Energy, vol. 33, no. 4, pp. 525–537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Lu, J. Cai, Q. Yu, and A. Xie, “The influences of materials flows in steel manufacturing process on its energy intensity,” Acta Metallurgica Sinica, vol. 36, no. 4, pp. 370–378, 2000 (Chinese). View at Google Scholar · View at Scopus
  10. Q. B. Yu, Z. W. Lu, and J. J. Cai, “Calculating method for influence of material flow on energy consumption in steel manufacturing process,” Journal of Iron and Steel Research International, vol. 14, no. 2, pp. 46–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Xie and Z. Lu, “Influence of structure adjustment of Chinese iron and steel industry on energy consumption,” Iron and Steel, vol. 31, no. 11, pp. 53–70, 1996 (Chinese). View at Google Scholar · View at Scopus
  12. G. Y. Ma, J. J. Cai, L. H. Zhang, and W. Q. Sun, “Influence of steam recovery and consumption on energy consumption per ton of steel,” Energy Procedia, vol. 14, pp. 566–571, 2012. View at Publisher · View at Google Scholar
  13. P. Michaelis and T. Jackson, “Material and energy flow through the UK iron and steel sector—part 2: 1994–2019,” Resources, Conservation and Recycling, vol. 29, no. 3, pp. 209–230, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. A. Gudim, A. A. Golubev, S. G. Ovchinnikov, and I. Y. Zinurov, “Promising technology for making steel with the use of scrap and a metallized raw material,” Metallurgist, vol. 53, no. 3-4, pp. 196–200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Liu, X. Zhang, M. Wu et al., “Computational and experimental study of cooling process in coke dry Quenching experimental shaft,” Journal of Thermal Science, vol. 11, no. 2, pp. 121–127, 2002. View at Google Scholar · View at Scopus
  16. C. M. Macedo, R. Schaeffer, and E. Worrell, “Exergy accounting of energy and material flows in steel production systems,” Energy, vol. 26, no. 4, pp. 363–384, 2001. View at Publisher · View at Google Scholar
  17. B. Lin, Y. Wu, and L. Zhang, “Estimates of the potential for energy conservation in the Chinese steel industry,” Energy Policy, vol. 39, no. 6, pp. 3680–3689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. W. Lu, “Analysis of the comprehensive energy consumption per ton of steel of China’s iron and steel industry,” Energy for Metallurgical Industry, vol. 11, no. 1, pp. 14–20, 1992 (Chinese). View at Google Scholar
  19. Z. W. Lu, “A brief analysis on the steel scrap resources for steel industry,” in CSM Annual Meeting Proceedings, pp. 70–80, Metallurgical Industry Press, Beijing, China, 2001. View at Google Scholar
  20. W. Q. Sun, J. J. Cai, T. Du, and D. W. Zhang, “Specific energy consumption analysis model and its application in typical steel manufacturing process,” Journal of Iron and Steel Research International, vol. 17, no. 10, pp. 33–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Cai, J. C. He, and Z. W. Lu, “Analysis of energy saving and energy consumption in Chinese steel industry for last 20 years and next 5 years,” Iron and Steel, vol. 37, no. 11, pp. 69–73, 2002 (Chinese). View at Google Scholar
  22. H. X. Jin, F. Z. Wu, and Y. H. Li, “Analysis on energy saving for blast furnace-converter process,” Modern Machinery, no. 6, pp. 30–35, 2008 (Chinese). View at Google Scholar
  23. J. J. Cai and W. Q. Sun, “Systems energy conservation and scientific energy utilization of iron and steel industry in China,” Iron and Steel, vol. 47, no. 5, pp. 1–5, 2012 (Chinese). View at Google Scholar
  24. Z. W. Lu, Q. G. Zhai, A. G. Xie, J. J. Cai, and Q. S. Meng, “Prediction on the energy consumption of Chinese steel industry,” Iron and Steel, vol. 32, no. 5, pp. 69–74, 1997 (Chinese). View at Google Scholar
  25. Q. C. Bu, Z. W. Lu, and J. J. Cai, “Analysis on energy consumption of crude steel in the ninth five-year plan in JISCO,” Energy for Metallurgical Industry, vol. 22, no. 1, pp. 10–13, 2003 (Chinese). View at Google Scholar
  26. Z. Lu, A. Xie, and D. Zhou, “More on direction and energy conservation measures of Chinese iron and steel industry,” Iron and Steel, vol. 31, no. 2, pp. 54–58, 1996 (Chinese). View at Google Scholar · View at Scopus
  27. Z. Liu, J. Liu, and Y. Wang, “Energy consumption in the iron and steel industry in P.R. China,” Energy for Sustainable Development, vol. 3, no. 3, pp. 18–24, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. X. L. Ma, C. Zhang, J. G. Liu, and H. J. Zhao, “Practice and discussion about the high-quality burden production in Anyang I&S Co.,” Sintering and Pelletizing, vol. 30, no. 4, pp. 56–59, 2002 (Chinese). View at Google Scholar
  29. O. Movshuk, “Restructuring, productivity and technical efficiency in China’s iron and steel industry, 1988–2000,” Journal of Asian Economics, vol. 15, no. 1, pp. 135–151, 2004. View at Google Scholar
  30. H. T. Makkonen, J. Heino, L. Laitila, A. Hiltunen, E. Pöyliö, and J. Härkki, “Optimisation of steel plant recycling in Finland: dusts, scales and sludge,” Resources, Conservation and Recycling, vol. 35, no. 1-2, pp. 77–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Song, “Practice of increasing power generation with sintering waste heat,” Sintering and Pelletizing, vol. 33, no. 2, pp. 55–58, 2008 (Chinese). View at Google Scholar
  32. J. J. Cai, J. J. Wang, C. X. Chen, and Z. W. Lu, “Recovery of residual-heat integrated steelworks,” Iron and Steel, vol. 42, no. 6, pp. 1–7, 2007 (Chinese). View at Google Scholar · View at Scopus
  33. J. Y. Gao, R. Z. Wang, and M. Zhou, “Development and application of dry coke quenching technology in China,” Gas & Heat, vol. 31, no. 1, pp. 4–7, 2011 (Chinese). View at Google Scholar
  34. D. Wang, T. Yang, Z. Wen et al., “A mathematical model for optimized operation and control in a CDQ-Boiler system,” Journal of University of Science and Technology Beijing, vol. 12, no. 5, pp. 390–393, 2005. View at Google Scholar · View at Scopus
  35. G. P. Ren, C. J. Ren, and Y. J. Wei, “Waste heat utilization technologies and application,” Shanghai Energy Conservation, no. 5, pp. 2–6, 2009 (Chinese). View at Google Scholar
  36. J. J. Cai, H. Dong, T. Du, C. B. Xu, J. W. Zhou, and K. Lin, “Study on grade recovery and cascade utilization of waste heat from sintering-cooling process,” Iron and Steel, vol. 46, no. 4, pp. 88–92, 2011 (Chinese). View at Google Scholar · View at Scopus
  37. J. Ma, D. G. Evans, R. J. Fuller, and D. F. Stewart, “Technical efficiency and productivity change of China's iron and steel industry,” International Journal of Production Economics, vol. 76, no. 3, pp. 293–312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Q. Weng, “Further development of coal injection and charge beneficiation for BF, promotion of energy saving, consumption reduction and structural regulation of ironmaking system,” Iron and Steel, vol. 33, no. 7, pp. 1–4, 1998 (Chinese). View at Google Scholar
  39. G. Q. Zhang, Q. F. Zhang, and Y. G. Liu, “Application of fluidized bed type coal moisture control technology with coke oven flue waste gas,” Fuel & Chemical Processes, vol. 41, no. 6, pp. 9–11, 2010 (Chinese). View at Google Scholar
  40. H. Deng, “Application of blast furnace dewetting blast technology and development,” Metallurgical Power, no. 4, pp. 62–64, 2009 (Chinese). View at Google Scholar
  41. L. C. Xiao, Q. Li, Z. J. Ding, L. Xiao, and B. Zhu, “Overview of dehydration of coal gas,” Journal of Hebei University (Natural Science Edition), vol. 27, no. 4, pp. 444–448, 2007 (Chinese). View at Google Scholar
  42. C. L. Li, “Application of dry dusting technique in blast furnace,” Metallurgical Power, no. 1, pp. 28–29, 2010 (Chinese). View at Google Scholar
  43. J. L. Tian, “Application status of dry dust removal technology for blast furnace gas,” Energy for Metallurgical Industry, vol. 26, no. 5, pp. 3–4, 2007 (Chinese). View at Google Scholar
  44. D. L. Zhang, Y. L. Mao, Y. L. Qu, and Z. Wang, “Dry-type deducting technology for converter gas,” World Steel, no. 5, pp. 51–59, 2012 (Chinese). View at Google Scholar
  45. T. S. Su, D. N. Lan, R. Z. Liu, S. T. Qiu, L. W. Liu, and X. R. Zheng, “The developing direction and forecast of China’s continues casting technique in ‘Tenth Five-year Plan’,” Journal of East China University of Metallurgy, vol. 17, no. 4, pp. 271–281, 2000 (Chinese). View at Google Scholar
  46. R. Y. Yin, “Discussion on high efficient and low cost clean steel production platform: one of the key technologies for steel industry in 21st century,” China Metallurgy, vol. 20, no. 10, pp. 1–10, 2010 (Chinese). View at Google Scholar
  47. L. Tang, P. B. Luh, J. Liu, and L. Fang, “Steel-making process scheduling using Lagrangian relaxation,” International Journal of Production Research, vol. 40, no. 1, pp. 55–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. H. Wang, J. J. Cai, and G. W. Xie, “Numerical study of flame properties and nitrogen oxide formation in high temperature air combustion,” in Challenges of Power Engineering and Environment: Proceedings of the International Conference on Power Engineering 2007, pp. 1376–1379, Zhejiang University Press, Springer, Hangzhou, China, 2007. View at Publisher · View at Google Scholar
  49. W. Dong, Design of Advanced Industrial Furnaces Using Numerical Modeling Method, Royal Institute of Technology, Stockholm, Sweden, 1999.
  50. W. Dong and W. Blasiak, “Study on mathematical modelling of highly preheated air combustion,” in Proceeding of the 2nd International High Temperature Air Combustion Symposium, pp. C521–C528, Kaohsiung, Taiwan, 1999.
  51. N. Rafidi and W. Blasiak, “Heat transfer characteristics of HiTAC heating furnace using regenerative burners,” Applied Thermal Engineering, vol. 26, no. 16, pp. 2027–2034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Glassman, Combustion, Academic Press Inc., London, UK, 1996.
  53. K. Fan, “Structure and function realization of the energy management and control center in Jinan Iron & Steel Co., Ltd.,” Metallurgical Industry Automation, vol. 35, no. 2, pp. 24–28, 2011 (Chinese). View at Google Scholar
  54. W. M. Feng and L. Q. Cong, “Energy management system of entire iron and steel plant,” Control Engineering of China, vol. 28, no. 3, pp. 597–600, 2005 (Chinese). View at Google Scholar
  55. J. H. Yang, W. Q. Sun, J. J. Cai, H. J. Mao, and R. Fang, “Development of supply-demand balance and distribution software of gas system for iron and steel industry,” Procedia Engineering, vol. 15, pp. 5143–5147, 2011. View at Publisher · View at Google Scholar
  56. Z. C. Chen and P. Robin, “Energy management and environmental awareness in China's enterprises,” Energy Policy, vol. 28, no. 1, pp. 49–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. H. S. Wang, “Strengthening productive forces based on information to create more benefits for enterprises,” Metallurgical Industry Automation, vol. 30, no. 1, pp. 1–5, 2006 (Chinese). View at Google Scholar
  58. J. Cai, Z. Lu, and T. Du, “The analysis of energy saving and the energy intensity of steel industry in China for last 20 years and next 5 years,” in Proceedings of the International Conference on Energy and the Environment, pp. 37–42, Shanghai Scientific and Technical Publishers, Shanghai, China, December 2003. View at Scopus