Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 256758, 7 pages
http://dx.doi.org/10.1155/2013/256758
Research Article

Structure and Microhardness of Cu-Ta Joints Produced by Explosive Welding

1Novosibirsk State Technical University, Karl Marx Prospect 20, 630073 Novosibirsk, Russia
2Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Akademika Lavrentyev Prospect 15, 630090 Novosibirsk, Russia

Received 14 August 2013; Accepted 30 September 2013

Academic Editors: X. Cao, Y.-K. Gao, and Z. Zhou

Copyright © 2013 Iu. N. Maliutina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Findik, “Recent developments in explosive welding,” Materials & Design, vol. 32, no. 3, pp. 1081–1093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Kahraman and B. Gülenç, “Microstructural and mechanical properties of Cu-Ti plates bonded through explosive welding process,” Journal of Materials Processing Technology, vol. 169, no. 1, pp. 67–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. I. A. Bataev, D. V. Pavlyukova, T. V. Zhuravina, E. B. Makarova, and D. S. Terent’ev, “Explosive welding of laminated composite materials from dissimilar steels,” Obrabotka Metallov: Tekhnologiya, Oborudovanie, Instrumenty, no. 1, pp. 6–8, 2010. View at Google Scholar
  4. I. A. Bataev, A. A. Bataev, V. I. Mali, and D. V. Pavliukova, “Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing,” Materials & Design, vol. 35, pp. 225–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. A. A. Akbari Mousavi and P. F. Sartangi, “Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium-stainless steel composite,” Materials Science and Engineering A, vol. 494, no. 1-2, pp. 329–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. I. Hong and M. A. Hill, “Microstructural stability of Cu-Nb microcomposite wires fabricated by the bundling and drawing process,” Materials Science and Engineering A, vol. 281, no. 1-2, pp. 189–197, 2000. View at Google Scholar · View at Scopus
  7. R.-S. Lei, M.-P. Wang, M.-X. Guo, Z. Li, and Q.-Y. Dong, “Microstructure evolution and thermal stability of nanocrystalline Cu-Nb alloys during heat treatment,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 2, pp. 272–276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Li, J. L. Chen, J. G. Li, and Z. X. Li, “High heat load properties of actively cooled tungsten/copper mock-ups by explosive joining,” Journal of Nuclear Materials, vol. 363–365, no. 1–3, pp. 1226–1230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. A. Darling, A. J. Roberts, Y. Mishin, S. N. Mathaudhu, and L. J. Kecskes, “Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum,” Journal of Alloys and Compounds, vol. 573, pp. 142–150, 2013. View at Google Scholar
  10. T. Frolov, K. A. Darling, L. J. Kecskes, and Y. Mishin, “Stabilization and strengthening of nanocrystalline copper by alloying with tantalum,” Acta Materialia, vol. 60, no. 5, pp. 2158–2168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Wang, M. J. Zaluzec, and J. M. Rigsbee, “Microstructure and mechanical properties of sputter-deposited Cu1-xTax alloys,” Metallurgical and Materials Transactions A, vol. 28, no. 4, pp. 917–925, 1997. View at Google Scholar · View at Scopus
  12. B. A. Greenberg, M. A. Ivanov, V. V. Rybin et al., “The problem of intermixing of metals possessing no mutual solubility upon explosion welding (Cu-Ta, Fe-Ag, Al-Ta),” Materials Characterization, vol. 75, pp. 51–62, 2013. View at Publisher · View at Google Scholar
  13. B. A. Greenberg, M. A. Ivanov, V. V. Rybin et al., “Inhomogeneities of the interface produced by explosive welding,” Physics of Metals and Metallography, vol. 113, no. 2, pp. 176–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. P. Kiselev and V. I. Mali, “Numerical and experimental modeling of jet formation during a high-velocity oblique impact of metal plates,” Combustion, Explosion, and Shock Waves, vol. 48, no. 2, pp. 214–225, 2012. View at Publisher · View at Google Scholar
  15. V. I. Mali, I. A. Bataev, A. A. Bataev, D. V. Pavlyukova, and E. A. Prikhod’ko, “Geometric transformations of sheet blanks during explosive welding of multilayer packets,” Fizicheskaya Mezomekhanika, vol. 14, no. 6, pp. 117–124, 2011. View at Google Scholar
  16. I. A. Balagansky, K. Hokamoto, P. Manikandan et al., “Mach stem formation in explosion systems, which include high modulus elastic elements,” Journal of Applied Physics, vol. 110, no. 12, Article ID 123516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Bataev, A. Bataev, V. I. Mali, M. Esikov, and V. Bataev, “Peculiarities of weld seams and adjacent zones structures formed in process of explosive welding of sheet steel plates,” Materials Science Forum, vol. 673, pp. 95–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. I. A. Bataev, A. A. Bataev, V. I. Mali, V. G. Burov, and E. A. Prikhod'ko, “Formation and structure of vortex zones arising upon explosion welding of carbon steels,” Physics of Metals and Metallography, vol. 113, no. 3, pp. 233–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Bataev, A. Bataev, V. Mali et al., “Structure and fatigue crack resistance of multilayer materials produced by explosive welding,” Advanced Materials Research, vol. 287–290, pp. 108–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, NY, USA, 2nd edition, 2004.