Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 258758, 7 pages
http://dx.doi.org/10.1155/2013/258758
Research Article

Radiation Sterilization of Anthracycline Antibiotics in Solid State

1Biofarm Sp. z o.o., Wałbrzyska 13, 60-198 Poznań, Poland
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
3Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
4Department of Oncological Surgery II, Great Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland
5Department of Modified Antibiotics, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland

Received 23 August 2013; Accepted 19 September 2013

Academic Editors: J. McHowat and S. J. Rajput

Copyright © 2013 A. Kaczmarek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. N. Hortobágyi, “Anthracyclines in the treatment of cancer: an overview,” Drugs, vol. 54, no. 4, pp. 1–7, 1997. View at Google Scholar
  2. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity,” Pharmacological Reviews, vol. 56, no. 2, pp. 185–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. B. Weiss, “The anthracyclines: will we ever find a better doxorubicin?” Seminars in Oncology, vol. 19, no. 6, pp. 670–686, 1992. View at Google Scholar · View at Scopus
  4. H. Cortés-Funes and C. Coronado, “Role of anthracyclines in the era of targeted therapy,” Cardiovascular Toxicology, vol. 7, no. 2, pp. 56–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Pagani, C. Sessa, G. Martinelli et al., “Dose-finding study of epidoxorubicin and docetaxel as first-line chemotherapy in patients with advanced breast cancer,” Annals of Oncology, vol. 10, no. 5, pp. 539–545, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Romanini, L. Tanganelli, F. Carnino et al., “First-line chemotherapy with epidoxorubicin, paclitaxel, and carboplatin for the treatment of advanced epithelial ovarian cancer patients,” Gynecologic Oncology, vol. 89, no. 3, pp. 354–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Wang, K. Lew, M. Barecki, C. N. Casciano, R. P. Clement, and W. W. Johnson, “Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4,” Chemical Research in Toxicology, vol. 14, no. 12, pp. 1596–1603, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Fakhoury, C. Litalien, Y. Medard et al., “Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age,” Drug Metabolism and Disposition, vol. 33, no. 11, pp. 1603–1607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. European Pharmacopoeia, Council of Europe, Strasbourg, France, 7th edition, 2010.
  10. A. Sobczak, A. Jelińska, M. Leśniewska, A. Firlej, and I. Oszczapowicz, “Stability of epidoxorubicin in solid state,” Journal of Pharmaceutical and Biomedical Analysis, vol. 54, no. 4, pp. 869–872, 2010. View at Google Scholar
  11. J. Cielecka-Piontek, A. Jelińska, M. Zajac, M. Sobczak, A. Bartold, and I. Oszczapowicz, “A comparison of the stability of doxorubicin and daunorubicin in solid state,” Journal of Pharmaceutical and Biomedical Analysis, vol. 50, no. 4, pp. 576–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Jelińska, J. Uszak, J. Cielecka-Piontek et al., “Stability of [(N-pyrrolidine)metylene]daunorubicin in aqueous solutions,” Reaction Kinetics and Catalysis Letters, vol. 98, no. 1, pp. 69–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Zalewski, M. Zając, A. Jelińska, J. Cielecka-Piontek, and I. Oszczapowicz, “Stability study of anticancer agent N-[(Hexahydroazepin-1-yl)methyl] daunorubicin in aqueous solutions using HPLC method,” Asian Journal of Chemistry, vol. 23, no. 2, pp. 835–838, 2011. View at Google Scholar · View at Scopus
  14. J. Cielecka-Piontek, A. Jelińska, A. Dołhań et al., “Stability of new anticancer agents in intravenous solutions',” Asian Journal of Chemistry, vol. 24, no. 2, pp. 769–772, 2012. View at Google Scholar
  15. A. Jelińska, M. Zaj̧c, J. Cielecka-Piontek et al., “Validation of a stability indicating LC-UV method for [(N-morpholine) methylene]daunorubicin hydrochloride,” Chromatographia, vol. 67, no. 1, pp. 107–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Varshney and P. B. Dodke, “Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization,” Radiation Physics and Chemistry, vol. 71, no. 6, pp. 1103–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Morkunas and W. Bednarski, “Fusarium oxysporum-induced oxidative stress and antioxidative defenses of yellow lupine embryo axes with different sugar levels,” Journal of Plant Physiology, vol. 165, no. 3, pp. 262–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, Conn, USA, 2004.
  19. G. P. Jocobs, “The radation-sterilization of tetracycline hydrochloride,” Journal of Pharmacy and Pharmacology, vol. 28, supplement 7, 1976. View at Google Scholar