Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 340737, 9 pages
http://dx.doi.org/10.1155/2013/340737
Research Article

Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic) Acid Hydrogel for the Delivery of Isosorbide Mononitrate

1Division of Pharmacy and Pharmaceutical Science, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
2Faculty of Pharmacy, Bahauddin Zakariya University, Bosan Road, Multan 68000, Punjab, Pakistan
3College of Pharmacy, GC University Faisalabad, Jinnah Town, Faisalabad 38000, Punjab, Pakistan

Received 16 August 2013; Accepted 10 September 2013

Academic Editors: V. Tantishaiyakul and P. Zakeri-Milani

Copyright © 2013 Talib Hussain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Kim, S. J. Park, and S. I. Kim, “Properties of smart hydrogels composed of polyacrylic acid/poly(vinyl sulfonic acid) responsive to external stimuli,” Smart Materials and Structures, vol. 13, no. 2, pp. 317–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Atta and A.-A. A. Abdel-Azim, “Effect of crosslinker functionality on swelling and network parameters of copolymeric hydrogels,” Polymers for Advanced Technologies, vol. 9, no. 6, pp. 340–348, 1998. View at Google Scholar · View at Scopus
  3. N. Roy, N. Saha, T. Kitano, and P. Saha, “Novel hydrogels of PVP-CMC and their swelling effect on viscoelastic properties,” Journal of Applied Polymer Science, vol. 117, no. 3, pp. 1703–1710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zhang, R. Xie, S.-B. Zhang, C.-J. Cheng, X.-J. Ju, and L.-Y. Chu, “Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains,” Polymer, vol. 50, no. 11, pp. 2516–2525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. L. Lo, C. Y. Hsu, and H. R. Lin, “pH-and thermo-sensitive pluronic/poly(acrylic acid) in situ hydrogels for sustained release of an anticancer drug,” Journal of Drug Targeting, vol. 21, pp. 54–66, 2013. View at Publisher · View at Google Scholar
  6. J. E. Elliott, M. MacDonald, J. Nie, and C. N. Bowman, “Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure,” Polymer, vol. 45, no. 5, pp. 1503–1510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Lin, Q. Chen, and H. Luo, “Preparation and characterization of N-(2-carboxybenzyl)chitosan as a potential pH-sensitive hydrogel for drug delivery,” Carbohydrate Research, vol. 342, no. 1, pp. 87–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. N. M. Ranjha, G. Ayub, S. Naseem, and M. T. Ansari, “Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil,” Journal of Materials Science, vol. 21, no. 10, pp. 2805–2816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. R. Raj Singh, P. A. McCarron, A. D. Woolfson, and R. F. Donnelly, “Investigation of swelling and network parameters of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels,” European Polymer Journal, vol. 45, no. 4, pp. 1239–1249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. A. Peppas and A. R. Khare, “Preparation, structure and diffusional behavior of hydrogels in controlled release,” Advanced Drug Delivery Reviews, vol. 11, no. 1-2, pp. 1–35, 1993. View at Google Scholar · View at Scopus
  11. T. Çaykara, S. Kiper, and G. Demirel, “Network parameters and volume phase transition behavior of poly(N-isopropylacrylamide) hydrogels,” Journal of Applied Polymer Science, vol. 101, no. 3, pp. 1756–1762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-C. Lin and A. T. Metters, “Hydrogels in controlled release formulations: network design and mathematical modeling,” Advanced Drug Delivery Reviews, vol. 58, no. 12-13, pp. 1379–1408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Ranjha, J. Mudassir, and S. Majeed, “Synthesis and characterization of polycaprolactone/acrylic acid (PCL/AA) hydrogel for controlled drug delivery,” Bulletin of Materials Science, vol. 34, pp. 1537–1547, 2011. View at Publisher · View at Google Scholar
  14. T. Çaykara, M. Doǧmuş, and Ö. Kantoǧlu, “Network structure and swelling-shrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels,” Journal of Polymer Science B, vol. 42, no. 13, pp. 2586–2594, 2004. View at Publisher · View at Google Scholar
  15. D. Kanjickal, S. Lopina, M. M. Evancho-Chapman, S. Schmidt, and D. Donovan, “Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins,” Journal of Biomedical Materials Research A, vol. 74, no. 3, pp. 454–460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Francis, M. Kumar, and L. Varshney, “Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels,” Radiation Physics and Chemistry, vol. 69, no. 6, pp. 481–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Hussain, N. M. Ranjha, and Y. Shahzad, “Swelling and controlled release of tramadol hydrochloride from a pH-sensitive hydrogel,” Designed Monomers and Polymers, vol. 14, no. 3, pp. 233–249, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Adnadjevic and J. Jovanovic, “Novel approach in investigation of the poly(acrylic acid) hydrogel swelling kinetics in water,” Journal of Applied Polymer Science, vol. 107, no. 6, pp. 3579–3587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Z.-Q. Li, X. He, X. Gao et al., “Study on dissolution and absorption of four dosage forms of isosorbide mononitrate: level A in vitro-in vivo correlation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 79, no. 2, pp. 364–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Li, D. Han, T. Guan, X. Zhao, H. He, and X. Tang, “Isosorbide-5-mononitrate (5-ISMN) sustained-release pellets prepared by double layer coating for reducing 5-ISMN migration and sublimation,” International Journal of Pharmaceutics, vol. 400, no. 1-2, pp. 138–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Huang, H. Yu, and C. Xiao, “pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release,” Carbohydrate Polymers, vol. 69, no. 4, pp. 774–783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. A. Peppas and B. D. Barr-Howell, “Characterization of the crosslinked structure of hydrogels,” in Hydrogels in Medicine and Pharmacy, vol. 1, pp. 27–56, CRC Press, Boca Raton, Fla, USA, 1986. View at Google Scholar
  23. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA, 1953.
  24. J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, UK, 1979.
  25. N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang, “Physicochemical foundations and structural design of hydrogels in medicine and biology,” Annual Review of Biomedical Engineering, vol. 2, pp. 9–29, 2000. View at Google Scholar · View at Scopus
  26. Z. Y. Ding, J. J. Aklonis, and R. Salovey, “Model filled polymers. VI. Determination of the crosslink density of polmeric beads by swelling,” Journal of Polymer Science B, vol. 29, no. 8, pp. 1035–1038, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Higuchi, “Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices,” Journal of Pharmaceutical Sciences, vol. 52, pp. 1145–1149, 1963. View at Publisher · View at Google Scholar
  28. N. A. Peppas, “Analysis of Fickian and non-Fickian drug release from polymers,” Pharmaceutica Acta Helvetiae, vol. 60, no. 4, pp. 110–111, 1985. View at Google Scholar · View at Scopus
  29. Y. M. Mohan, J. P. Dickson, and K. E. Geckeler, “Swelling and diffusion characteristics of novel semi-interpenetrating network hydrogels composed of poly[(acrylamide)-co-(sodium acrylate)] and poly[(vinylsulfonic acid), sodium salt],” Polymer International, vol. 56, no. 2, pp. 175–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Pourjavadi and H. Ghasemzadeh, “Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior,” Polymer Engineering and Science, vol. 47, no. 9, pp. 1388–1395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Wang, D. J. T. Hill, F. Rasoul, and A. K. Whittaker, “A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels,” Radiation Physics and Chemistry, vol. 80, no. 2, pp. 207–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Pourjavadi and S. Barzegar, “Smart pectin-based superabsorbent hydrogel as a matrix for ibuprofen as an oral non-steroidal anti-inflammatory drug delivery,” Starch-Stärke, vol. 61, no. 3-4, pp. 173–187, 2009. View at Publisher · View at Google Scholar
  33. Y. Zheng, D. Huang, and A. Wang, “Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery,” Analytica Chimica Acta, vol. 687, no. 2, pp. 193–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. B. S. Kaith and K. Kumar, “In vacuum synthesis of psyllium and acrylic acid based hydrogels for selective water absorption from different oil-water emulsions,” Desalination, vol. 229, no. 1–3, pp. 331–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Sand, M. Yadav, and K. Behari, “Preparation and characterization of modified sodium carboxymethyl cellulose via free radical graft copolymerization of vinyl sulfonic acid in aqueous media,” Carbohydrate Polymers, vol. 81, no. 1, pp. 97–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. L. J. Waters, Y. Shahzad, and J. C. Mitchell, “pH effects in micellar liquid chromatographic analysis for determining partition coefficients for a series of pharmaceutically related compounds,” Current Pharmaceutical Analysis, vol. 8, no. 3, pp. 272–277, 2012. View at Publisher · View at Google Scholar
  37. A. V. Reis, M. R. Guilherme, A. F. Rubira, and E. C. Muniz, “Mathematical model for the prediction of the overall profile of in vitro solute release from polymer networks,” Journal of Colloid and Interface Science, vol. 310, no. 1, pp. 128–135, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. K. Mishra, M. Datt, and A. K. Banthia, “Synthesis and characterization of pectin/pvp hydrogel membranes for drug delivery system,” AAPS PharmSciTech, vol. 9, no. 2, pp. 395–403, 2008. View at Publisher · View at Google Scholar · View at Scopus