Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 350890, 13 pages
http://dx.doi.org/10.1155/2013/350890
Research Article

Bending Response of Cross-Ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration

Construction Research Centre, Universiti Teknologi Malaysia (UTM-CRC), 81310 Johor Bahru, Johor, Malaysia

Received 28 August 2013; Accepted 23 September 2013

Academic Editors: J. Escolano and M. Kuciej

Copyright © 2013 Chee Zhou Kam and Ahmad Beng Hong Kueh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending,” Journal of Composite Materials, vol. 3, no. 3, pp. 398–411, 1969. View at Google Scholar
  2. N. J. Pagano, “Exact solutions for rectangular bidirectional composites and sandwich plates,” Journal of Composite Materials, vol. 4, no. 1, pp. 20–34, 1970. View at Google Scholar
  3. N. J. Pagano, “Influence of shear coupling in cylindrical bending of anisotropic laminates,” Journal of Composite Materials, vol. 4, no. 3, pp. 330–343, 1970. View at Google Scholar
  4. H. Murakami, “A laminated beam theory with interlayer slip,” Journal of Applied Mechanics, vol. 51, no. 3, pp. 551–559, 1984. View at Google Scholar · View at Scopus
  5. A. Toledano and H. Murakami, “Shear-deformable two-layer plate theory with interlayer slip,” Journal of Engineering Mechanics, vol. 114, no. 4, pp. 604–623, 1988. View at Google Scholar
  6. X. Lu and D. Liu, “Interlayer shear slip theory for cross-ply laminates with nonrigid interfaces,” AIAA Journal, vol. 30, no. 4, pp. 1063–1073, 1992. View at Google Scholar · View at Scopus
  7. M. di Sciuva and M. Gherlone, “A global/local third-order Hermitian displacement field with damaged interfaces and transverse extensibility: FEM formulation,” Composite Structures, vol. 59, no. 4, pp. 433–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Shu, “A generalised model of laminated composite plates with interfacial damage,” Composite Structures, vol. 74, no. 2, pp. 237–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Shu and K. P. Soldatos, “An accurate de-lamination model for weakly bonded laminates subjected to different sets of edge boundary conditions,” International Journal of Mechanical Sciences, vol. 43, no. 4, pp. 935–959, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Shu and K. P. Soldatos, “An accurate stress analysis model for angle-ply laminates with weakly bonded layers,” Acta Mechanica, vol. 150, no. 3-4, pp. 161–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. R. da Silva and J. B. M. Sousa Jr., “A family of interface elements for the analysis of composite beams with interlayer slip,” Finite Elements in Analysis and Design, vol. 45, no. 5, pp. 305–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Z.-Q. Cheng, D. Kennedy, and F. W. Williams, “Effect of interfacial imperfection on buckling and bending behavior of composite laminates,” AIAA Journal, vol. 34, no. 12, pp. 2590–2595, 1996. View at Google Scholar · View at Scopus
  13. V. Q. Bui, E. Marechal, and H. Nguyen-Dang, “Imperfect interlaminar interfaces in laminated composites: bending, buckling and transient reponses,” Composites Science and Technology, vol. 59, no. 15, pp. 2269–2277, 1999. View at Google Scholar · View at Scopus
  14. Z.-Q. Cheng, A. K. Jemah, and F. W. Williams, “Theory for multilayered anisotropic plates with weakened interfaces,” Journal of Applied Mechanics, vol. 63, no. 4, pp. 1019–1026, 1996. View at Google Scholar · View at Scopus
  15. Z.-Q. Cheng, W. P. Howson, and F. W. Williams, “Modelling of weakly bonded laminated composite plates at large deflections,” International Journal of Solids and Structures, vol. 34, no. 27, pp. 3583–3599, 1997. View at Google Scholar · View at Scopus
  16. M. di Sciuva, U. Icardi, and L. Librescu, “On modeling of laminated composite structures featuring interlaminae imperfections,” Studies in Applied Mechanics, vol. 45, pp. 395–404, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. M. di Sciuva, U. Icardi, and L. Librescu, “Effects of interfacial damage on the global and local static response of cross-ply laminates,” International Journal of Fracture, vol. 96, no. 1, pp. 17–35, 1999. View at Google Scholar · View at Scopus
  18. J.-S. Kim, J. Oh, and M. Cho, “Efficient analysis of laminated composite and sandwich plates with interfacial imperfections,” Composites B, vol. 42, no. 5, pp. 1066–1075, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D.-H. Li, J.-X. Xu, and G.-H. Qing, “Free vibration analysis and eigenvalues sensitivity analysis for the composite laminates with interfacial imperfection,” Composites B, vol. 42, no. 6, pp. 1588–1595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Icardi, “Free vibration of composite beams featuring interlaminar bonding imperfections and exposed to thermomechanical loading,” Composite Structures, vol. 46, no. 3, pp. 229–243, 1999. View at Google Scholar · View at Scopus
  21. J. B. Cai, W. Q. Chen, and G. R. Ye, “Effect of interlaminar bonding imperfections on the behavior of angle-ply laminated cylindrical panels,” Composites Science and Technology, vol. 64, no. 12, pp. 1753–1762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Q. Chen, Y. F. Wang, J. B. Cai, and G. R. Ye, “Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces,” International Journal of Solids and Structures, vol. 41, no. 9-10, pp. 2429–2446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Li and Y. Liu, “Three-dimensional semi-analytical model for the static response and sensitivity analysis of the composite stiffened laminated plate with interfacial imperfections,” Composite Structures, vol. 94, no. 6, pp. 1943–1958, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Q. Chen, Y. Y. Zhou, C. F. Lü, and H. J. Ding, “Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding,” European Journal of Mechanics A, vol. 28, no. 4, pp. 720–727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kapuria and P. G. Nair, “Exact three-dimensional piezothermoelasticity solution for dynamics of rectangular cross-ply hybrid plates featuring interlaminar bonding imperfections,” Composites Science and Technology, vol. 70, no. 5, pp. 752–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kapuria and A. Kumar, “Three-dimensional piezoelasticity solution for piezolaminated angle-ply cylindrical shells featuring imperfect interfacial bonding,” in Behavior and Mechanics of Multifunctional Materials and Composites 2010, vol. 7644 of Proceedings of SPIE, San Diego, Calif, USA, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Q. Chen, J. B. Cai, G. R. Ye, and Y. F. Wang, “Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer,” International Journal of Solids and Structures, vol. 41, no. 18-19, pp. 5247–5263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Shu, “Modelling of cross-ply piezoelectric composite laminates in cylindrical bending with interfacial shear slip,” International Journal of Mechanical Sciences, vol. 47, no. 11, pp. 1673–1692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Q. Chen and K. Y. Lee, “Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces,” Archive of Applied Mechanics, vol. 74, no. 7, pp. 466–476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Q. Chen, J. P. Jung, and K. Y. Lee, “Static and dynamic behavior of simply-supported cross-ply laminated piezoelectric cylindrical panels with imperfect bonding,” Composite Structures, vol. 74, no. 3, pp. 265–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. P. Soldatos and X. Shu, “Modelling of perfectly and weakly bonded laminated plates and shallow shells,” Composites Science and Technology, vol. 61, no. 2, pp. 247–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. T. O. Williams, “A generalized multilength scale nonlinear composite plate theory with delamination,” International Journal of Solids and Structures, vol. 36, no. 20, pp. 3015–3050, 1999. View at Google Scholar · View at Scopus
  33. T. O. Williams and F. L. Addessio, “A general theory for laminated plates with delaminations,” International Journal of Solids and Structures, vol. 34, no. 16, pp. 2003–2024, 1997. View at Google Scholar · View at Scopus
  34. V. Q. Bui, E. Marechal, and H. Nguyen-Dang, “Imperfect interlaminar interfaces in laminated composites: interlaminar stresses and strain-energy release rates,” Composites Science and Technology, vol. 60, no. 1, pp. 131–143, 2000. View at Google Scholar · View at Scopus
  35. D. Liu, L. Xu, and X. Lu, “An interlaminar bonding theory for delamination and nonrigid interface analysis,” Journal of Reinforced Plastics and Composites, vol. 12, no. 11, pp. 1198–1211, 1993. View at Google Scholar
  36. D. Liu, L. Xu, and X. Lu, “Stress analysis of imperfect composite laminates with an interlaminar bonding theory,” International Journal for Numerical Methods in Engineering, vol. 37, no. 16, pp. 2819–2839, 1994. View at Google Scholar · View at Scopus
  37. W. Q. Chen and K. Y. Lee, “Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method,” Composite Structures, vol. 64, no. 3-4, pp. 275–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Fu, S. Li, and Y. Jiang, “Analysis of inter-laminar stresses for composite laminated plate with interfacial damage,” Acta Mechanica Solida Sinica, vol. 21, no. 2, pp. 127–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Z. Kam, A. B. H. Kueh, P. N. Shek, C. S. Tan, and M. M. Tahir, “Flexural performance of laminated composite plates with diagonally perturbed localized delamination,” Advanced Science Letters, vol. 14, no. 1, pp. 455–457, 2012. View at Google Scholar
  40. X. Shu, “Piezothermoelastic responses of piezoelectric composite laminates with weak interfaces,” Acta Mechanica, vol. 214, no. 3-4, pp. 327–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. K. Achryya, D. Chakravorty, and A. Karmakar, “Bending characteristics of delaminated composite cylindrical shells—a finite element approach,” Journal of Reinforced Plastics and Composites, vol. 28, no. 8, pp. 965–978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kumari and D. Chakravorty, “Finite element bending behavior of discretely delaminated composite conoidal shell roofs under concentrated load,” International Journal of Engineering, Science and Technology, vol. 2, no. 4, pp. 54–70, 2010. View at Google Scholar
  43. S. Kumari and D. Chakravorty, “On the bending characteristics of damaged composite conoidal shells—a finite element approach,” Journal of Reinforced Plastics and Composites, vol. 29, no. 21, pp. 3287–3296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Q. Chen, J. Ying, J. B. Cai, and G. R. Ye, “Benchmark solution of imperfect angle-ply laminated rectangular plates in cylindrical bending with surface piezoelectric layers as actuator and sensor,” Computers and Structures, vol. 82, no. 22, pp. 1773–1784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Krawczuk, W. Ostachowicz, and A. Zak, “Analysis of natural frequencies of delaminated composite beams based on finite element method,” Structural Engineering and Mechanics, vol. 4, no. 3, pp. 243–255, 1996. View at Google Scholar · View at Scopus
  46. N. Nanda and Y. Natha, “Active control of delaminated composite shells with piezoelectric sensor/actuator patches,” Structural Engineering and Mechanics, vol. 42, no. 2, pp. 211–228, 2012. View at Google Scholar · View at Scopus
  47. Y. Y. Zhou, W. Q. Chen, and C. F. Lü, “Semi-analytical solution for orthotropic piezoelectric laminates in cylindrical bending with interfacial imperfections,” Composite Structures, vol. 92, no. 4, pp. 1009–1018, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. F. Gibson, Principles of Composite Material Mechanics, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2012.
  49. A. L. G. A. Coutinho, M. A. D. Martins, R. M. Sydenstricker, J. L. D. Alves, and L. Landau, “Simple zero thickness kinematically consistent interface elements,” Computers and Geotechnics, vol. 30, no. 5, pp. 347–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. H. Sheikh and A. Chakrabarti, “A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates,” Finite Elements in Analysis and Design, vol. 39, no. 9, pp. 883–903, 2003. View at Publisher · View at Google Scholar · View at Scopus