Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 376216, 10 pages
http://dx.doi.org/10.1155/2013/376216
Research Article

Extraction Optimization of Tinospora cordifolia and Assessment of the Anticancer Activity of Its Alkaloid Palmatine

Department of Chemistry, MANIT, Bhopal, Madhya Pardesh, India

Received 29 August 2013; Accepted 23 September 2013

Academic Editors: F. S. Hall, M. W. Jann, M. Kaster, and D. N. Tripathi

Copyright © 2013 Huma Ali and Savita Dixit. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Sinha, N. P. Mishra, J. Singh, and S. P. S. Khanuja, “Tinospora cordifolia, (Guduchi), a reservoir plant for therapeutic application: a review,” Indian Journal of Traditional Knowledge, vol. 3, pp. 257–270, 2004. View at Google Scholar
  2. Devprakash, K. K. Srinivasan, T. Subburaju, S. Gurav, and S. Singh, “Tinospora cordifolia: a review on its ethnobotany, phytochemical and pharmacological profile,” Asian Journal of Biochemical and Pharmaceutical Research, vol. 1, pp. 291–302, 2011. View at Google Scholar
  3. P. Giri, M. Hossain, and G. S. Kumar, “RNA specific molecules: cytotoxic plant alkaloid palmatine binds strongly to poly(A),” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 9, pp. 2364–2368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. L. Kuo, C. C. Chou, and B. Y.-M. Yung, “Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells,” Cancer Letters, vol. 94, no. 1, pp. 193–200, 1995. View at Google Scholar · View at Scopus
  5. L. Zhang, J. Li, F. Ma et al., “Synthesis and cytotoxicity evaluation of 13-n berberine and palmatine analogues as anticancer agents,” Molecules, vol. 17, pp. 11295–11302, 2012. View at Google Scholar
  6. P. Sharma, J. Parmar, P. Verma, P. Sharma, and P. K. Goyal, “Anti-tumor activity of Phyllanthus niruri (a medicinal plant) on chemical-induced skin carcinogenesis in mice,” Asian Pacific Journal of Cancer Prevention, vol. 10, no. 6, pp. 1089–1094, 2009. View at Google Scholar · View at Scopus
  7. Y. M. Kim, Y. M. Ha, Y. C. Jin et al., “Palmatine from Coptidis rhizoma reduces ischemia-reperfusion-mediated acute myocardial injury in the rat,” Food and Chemical Toxicology, vol. 47, no. 8, pp. 2097–2102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T.-J. Hsieh, Y.-C. Chia, Y.-C. Wu, and C.-Y. Chen, “Chemical constituents from the stems of Mahonia japonica,” Journal of the Chinese Chemical Society, vol. 51, no. 2, pp. 443–446, 2004. View at Google Scholar · View at Scopus
  9. H. K. Sandhar, B. Kumar, S. Prasher, P. Tiwari, M. Salhan, and P. Sharma, “A review of phytochemistry and pharmacology of flavanoids,” Internationale Pharmaceutica Sciencia, vol. 1, pp. 25–41, 2011. View at Google Scholar
  10. I. Das and T. Saha, “Effect of garlic on lipid peroxidation and antioxidation enzymes in DMBA-induced skin carcinoma,” Nutrition, vol. 25, no. 4, pp. 459–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Pandey and R. C. Agrawal, “Effect of bauhinia variegate bark extract on DMBA-induced mouse skin carcinogenesis: a preliminary study,” Global Journal of Pharmacology, vol. 3, pp. 158–162, 2009. View at Google Scholar
  12. D. Blessy, K. Suresh, S. Manoharan, M. A. Vijayaanand, and G. Sugunadevi, “Evaluation of chemopreventive potential of Zingiber officinale Roscoe ethanolic root extract on 7, 12-dimethyl benz[a]anthracene induced oral carcinogenesis,” Research Journal of Agriculture and Biological Sciences, vol. 5, no. 5, pp. 775–781, 2009. View at Google Scholar
  13. I. Das, S. Das, and T. Saha, “Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: a histopathological study,” Acta Histochemica, vol. 112, no. 4, pp. 317–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988. View at Google Scholar · View at Scopus
  15. D. Ali, R. S. Ray, and R. K. Hans, “UVA-induced cyototoxicity and DNA damaging potential of benz (e) acephenanthrylene,” Toxicology Letters, vol. 199, no. 2, pp. 193–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Anderson, T.-W. Yu, B. J. Phillips, and P. Schmezer, “The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay,” Mutation Research, vol. 307, no. 1, pp. 261–271, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. J. D. Bancroft and A. Stevens, Theory and Practice of Histological Techniques, Churchill-Livingstone, London, UK, 4th edition, 1999.
  18. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  19. Y. B. Ji, F. Dong, D. B. Ma et al., “Optimizing the extraction of anti-tumor polysaccharides from the fruit of Capparis spionosa L. by response surface methodology,” Molecules, vol. 17, pp. 7323–7335, 2012. View at Publisher · View at Google Scholar
  20. E. Y. Jin, S. Lim, S. O. Kim et al., “Optimization of various extraction methods for quercetin from onion skin using response surface methodology,” Food Science and Biotechnology, vol. 20, no. 6, pp. 1727–1733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Mouli, T. Vijaya, and S. D. Rao, “Phytoresources as potential therapeutic agents for cancer treatment and prevention,” Journal of Global Pharma Technology, vol. 1, pp. 4–18, 2009. View at Google Scholar
  22. A. H. Roslida, O. Fezah, and L. T. Yeong, “Suppression of DMBA/croton oil-induced mouse skin tumor promotion by Ardisia crispa root hexane extract,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 3, pp. 665–669, 2011. View at Google Scholar · View at Scopus
  23. J. E. Klaunig, L. M. Kamendulis, and B. A. Hocevar, “Oxidative stress and oxidative damage in carcinogenesis,” Toxicologic Pathology, vol. 38, no. 1, pp. 96–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. K. Basu and L. J. Marnett, “Unequivocal demonstration that malondialdehyde is a mutagen,” Carcinogenesis, vol. 4, no. 3, pp. 331–333, 1983. View at Google Scholar · View at Scopus
  25. G. Oto, S. Ekin, H. Ozdemir et al., “Plantago major protective effects on antioxidant status after administration of 7,12-dimethylbenz(a)anthracene in rats,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 2, pp. 531–535, 2011. View at Google Scholar · View at Scopus
  26. C. K. Sen, “Nutritional biochemistry of cellular glutathione,” Journal of Nutritional Biochemistry, vol. 8, no. 12, pp. 660–672, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Dröge, K. Schulze-Osthoff, S. Mihm et al., “Functions of glutathione and glutathione disulfide in immunology and immunopathology,” The FASEB Journal, vol. 8, no. 14, pp. 1131–1138, 1994. View at Google Scholar · View at Scopus
  28. C. K. Sen and O. Hannienen, “Physiological antioxidant,” in Exercise Andoxygen Toxicity, p. 89, Elsevier, Amsterdam, The Netherlands, 1994. View at Google Scholar
  29. S. Khanna, M. Atalay, M. Gul, S. Rooy, and C. K. Sen, “Effects of radiation on TBARS in rats,” Journal of Applied Physics, vol. 86, p. 1191, 1999. View at Publisher · View at Google Scholar
  30. J. Parmar, P. Sharma, P. Verma, and P. K. Goyal, “Anti-tumor and anti-oxidative activity of Rosmarinus officinalis in 7, 12 dimethyl benz(a) anthracene induced skin carcinogenesis in mice,” American Journal of Biomedical Sciences, vol. 3, pp. 199–209, 2011. View at Google Scholar
  31. C. J. Sherr, “Principles of tumor suppression,” Cell, vol. 116, no. 2, pp. 235–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Eastman and M. A. Barry, “The origins of DNA breaks: a consequence of DNA damage, DNA repair, or apoptosis?” Cancer Investigation, vol. 10, no. 3, pp. 229–240, 1992. View at Google Scholar · View at Scopus