Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 380692, 7 pages
http://dx.doi.org/10.1155/2013/380692
Research Article

Variations in the Levels of Mulberroside A, Oxyresveratrol, and Resveratrol in Mulberries in Different Seasons and during Growth

1School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
2School of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China
3Hunan Institute of Sericulture, Changsha 410127, China

Received 27 June 2013; Accepted 17 July 2013

Academic Editors: S. E. Harris and T. Kaneta

Copyright © 2013 Jin Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Chillemi, S. Sciuto, C. Spatafora, and C. Tringali, “Anti-tumor properties of stilbene-based resveratrol analogues: recent results,” Natural Product Communications, vol. 2, pp. 499–513, 2007. View at Google Scholar
  2. P. Tengamnuay, K. Pengrungruangwong, I. Pheansri, and K. Likhitwitayawuid, “Artocarpus lakoocha heartwood extract as a novel cosmetic ingredient: evaluation of the in vitro anti-tyrosinase and in vivo skin whitening activities,” International Journal of Cosmetic Science, vol. 28, no. 4, pp. 269–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Sasivimolphan, V. Lipipun, K. Likhitwitayawuid et al., “Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro,” Antiviral Research, vol. 84, no. 1, pp. 95–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Andrabi, M. G. Spina, P. Lorenz, U. Ebmeyer, G. Wolf, and T. F. W. Horn, “Oxyresveratrol (trans-2,3,4,5-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia,” Brain Research, vol. 1017, no. 1-2, pp. 98–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Lorenz, S. Roychowdhury, M. Engelmann, G. Wolf, and T. F. W. Horn, “Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells,” Nitric Oxide, vol. 9, no. 2, pp. 64–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Chatsumpun, T. Chuanasa, B. Sritularak, and K. Likhitwitayawuid, “Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin,” Natural Product Communications, vol. 6, no. 1, pp. 41–44, 2011. View at Google Scholar · View at Scopus
  7. E. Alonso, D. J. Ramón, and M. Yus, “Simple synthesis of 5-substituted resorcinols: a revisited family of interesting bioactive molecules,” Journal of Organic Chemistry, vol. 62, no. 2, pp. 417–421, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Shao, H.-Z. Guo, Y.-J. Cui et al., “Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography,” Journal of Pharmaceutical and Biomedical Analysis, vol. 44, no. 3, pp. 737–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Huang, M. Liang, P. Jiang, Y. Li, W. Zhang, and Q. Gong, “Quality evaluation of Rhodiola crenulata: quantitative and qualitative analysis of ten main components by HPLC,” Journal of Liquid Chromatography and Related Technologies, vol. 31, no. 9, pp. 1324–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. M. Kim, J. Yun, C.-K. Lee, H. Lee, K. R. Min, and Y. Kim, “Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 16340–16344, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Chong, A. Poutaraud, and P. Hugueney, “Metabolism and roles of stilbenes in plants,” Plant Science, vol. 177, no. 3, pp. 143–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Jeandet, B. Delaunois, A. Conreux et al., “Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants,” BioFactors, vol. 36, no. 5, pp. 331–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Langcake and R. J. Pryce, “A new class of phytoalexins from grapevines,” Experientia, vol. 33, no. 2, pp. 151–152, 1977. View at Publisher · View at Google Scholar · View at Scopus
  14. K. O. Müller and H. Börger, “Experimentelle Untersuchungen über die Phytophthora- Resistenz der Kartoffel,” Arbeiten aus der Biologischen Reichsanstalt für Land-und Forstwirtschaft, vol. 23, pp. 189–231, 1940. View at Google Scholar
  15. M. B. Austin and J. P. Noel, “The chalcone synthase superfamily of type III polyketide synthases,” Natural Product Reports, vol. 20, no. 1, pp. 79–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Yu and J. M. Jez, “Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides,” Plant Journal, vol. 54, no. 4, pp. 750–762, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A.-C. Douillet-Breuil, P. Jeandet, M. Adrian, and R. Bessis, “Changes in the phytoalexin content of various Vitis spp. in response to ultraviolet C elicitation,” Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 4456–4461, 1999. View at Publisher · View at Google Scholar · View at Scopus