Abstract

A right module over an associative ring with unity is a QTAG-module if every finitely generated submodule of any homomorphic image of is a direct sum of uniserial modules. In this paper we find a suitable condition under which a special -elongation of a summable QTAG-module by a -projective QTAG-module is also a summable QTAG-module.

1. Introduction and Preliminaries

The study of QTAG-modules was initiated by Singh [1]. Mehdi et al. studied different notions and structures on QTAG-modules, developed the theory of these modules by introducing several notions and some interesting properties of these modules and characterized different submodules of QTAG-modules. Yet there is much to explore.

Throughout this paper, all rings will be associative with unity and modules are unital QTAG-modules. An element is uniform, if is a nonzero uniform (hence uniserial) module and for any -module with a unique composition series, denotes its composition length. For a uniform element , and are the exponent and height of in , respectively. denotes the submodule of generated by the elements of height at least and is the submodule of generated by the elements of exponents at most . A QTAG-module is called a -module, if all of its high submodules are direct sums of uniserial modules. is -divisible if .

A module is summable if , where is the set of all elements of which are not in , where is the length of .

A submodule is nice [2, Definition 2.3] in , if for all ordinals ; that is, every coset of modulo may be represented by an element of the same height.

Recall that a QTAG-module is -projective if there exists a submodule such that is a direct sum of uniserial modules and a QTAG-module is -projective if there exists a submodule such that is a direct sum of uniserial modules [3].

A QTAG-module is an -elongation of a totally projective QTAG-module by a -projective QTAG-module if and only if is totally projective and is -projective.

2. Main Results

In [4], we studied strong -elongations of summable modules by -projective QTAG-modules. It was found that the module is a special -elongation if is summable and there exists a submodule such that is a direct sum of uniserial modules. We showed there that under certain additional circumstances on these elongations are of necessity summable modules; in fact was taken; that is, is a height finite submodule of .

In [5], the class of -layered module was introduced which is a proper subclass of -modules as follows: is an -layered module if , , and for all . . It was proved there that every -layered module which is a strong -elongation of a totally projective module by a -projective module is totally projective and vice versa; in particular each -layered module is -projective uniquely when it is a direct sum of modules of length at most .

Motivated by these elongations we investigate the relationship between the classes of -layered modules and strong -elongations of summable modules by -projective modules, that is, how -layered modules are situated inside these special -elongations of summable modules by -projective modules and whether there is an analogue with the strong -elongations of a totally projective modules by -projective modules.

Before doing that, we need the following preliminaries.

A module is said to be pillared [6], if is a direct sum of uniserial modules. Clearly, such a module is necessarily -layered module and hence a -module [5], whereas the converse is not true in general. We investigate the conditions under which the converse holds good.

A module is said to be a strong -elongation (of a summable module) by a -projective module if there exists a submodule with a direct sum of uniserial modules. The first Ulm-factor of this module is -projective. There are modules with -projective first Ulm-factor which are not strong -elongations by a -projective module. These modules are with strongly -projective first Ulm-factor.

Now we are in the state to prove the following main result.

Theorem 1. An -layered module is a strong -elongation by a -projective module if and only if it is a pillared module.

Proof. Suppose that is an -layered module, so , , and for all . and suppose that there exists a submodule of such that with is a direct sum of uniserial modules. Clearly, Since , we infer that and thus by putting .
Using modular law, we compute that Hence is a direct sum of uniserial modules and therefore is pillared. The proof is complete as the converse is trivial.

Proposition 2. An -layered module is a strong -elongation of a summable module by a -projective module if and only if it is a summable pillared module.

Proof. Suppose -layered module is a strong -elongation of a summable module by a -projective module. Since is a -module and is summable, has to be summable as well and Theorem 1 ensures that must be pillared.
Suppose that is summable pillared module, so it ensures that is summable and pillared modules are both -layered and strong -elongations by -projective module by taking , which completes the proof.

As an immediate consequence of the above, we have the following corollary.

Corollary 3. Suppose is a -module which is a strong -elongation of a summable module by a -projective module and the th Ulm-Kaplansky invariants of are zero for each such that , if . Then is a summable pillared module.

Proof. Since th Ulm-Kaplansky invariants of are zero, where is a high submodule of . Since it is a direct sum of uniserial modules, where . Putting , we obtain . Since is -pure in , we have By Proposition 2, is an -layered module.

Proposition 4. A module of length not exceeding is an -layered module if and only if it is a direct sum of countably generated modules.

Proof. Suppose is an -layered module of length not exceeding ; then and hence since . Moreover, we write , and . Consequently, , where . We compute hence is pillared and as is bounded, is a direct sum of countable modules.
The sufficiency is obvious and follows from [5].

As an immediate consequence of the above, we have the following corollary.

Corollary 5. A module is an -layered module if and only if each of its -high submodules is a direct sum of countable modules.

Proof. Let be an -layered module and be its -high submodule. In [5], we show that is an -layered module precisely when is an -layered module. Hence using the Proposition 4, result follows immediately.

With the help of the last statement we can verify once again the validity of Corollary 3 as it is checked that a submodule of is -high in if and only if is -high in whenever the th Ulm-Kaplansky invariants of are zero for ; that is,

A module is said to be strong -elongation of a summable module by a totally projective module if is summable and there is a nice submodule of such that and is totally projective [3].

Now we are in the state to prove our final result.

Theorem 6. An -layered module is a strong -elongation of a summable module by a totally projective module if and only if it is a summable pillared module.

Proof. Clearly is totally projective. Since , is contained in some -high submodule of , say . By Corollary 5, is totally projective of length at most , so we may write , where and all ’s are height finite in and hence in as is isotype in . Therefore In the same way, we can show that are height finite in and by [3], is nice in and hence is totally projective. Then should be a direct sum of uniserial modules and hence is pillared.
On the other hand, being summable implies that is summable and hence has to be summable; thus it is summable pillared, which completes the proof.

As an immediate consequence for , we have the following.

Corollary 7. A -module is a strong -elongation of a summable module by a totally projective module if and only if it is a summable pillared module.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.