Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 415310, 9 pages
http://dx.doi.org/10.1155/2013/415310
Review Article

Pharmaceutical Point of View on Parenteral Nutrition

1Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60-780 Poznań, Poland
2School of Pharmacy, De Montfort University, The Gateway, Leicester LE19 BH, UK

Received 28 August 2013; Accepted 6 October 2013

Academic Editors: T. E. Adrian and T. Florio

Copyright © 2013 M. Stawny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Dudrick, “History of parenteral nutrition,” Journal of the American College of Nutrition, vol. 28, no. 3, pp. 243–251, 2009. View at Google Scholar · View at Scopus
  2. N. J. M. Cano, M. Aparicio, G. Brunori et al., “ESPEN guidelines on parenteral nutrition: adult renal failure,” Clinical Nutrition, vol. 28, no. 4, pp. 401–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Singer, M. M. Berger, G. Van den Berghe et al., “ESPEN guidelines on parenteral nutrition: intensive care,” Clinical Nutrition, vol. 28, no. 4, pp. 387–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Cardona, M. Nadal, J. Estelrich, and M. A. Mangues, “Review of drug stability in parenteral nutrition admixtures,” e-SPEN Journal, vol. 8, no. 4, pp. 135–140, 2013. View at Publisher · View at Google Scholar
  5. S. Muhlebach, “Basics in clinical nutrition: drugs and nutritional admixtures,” e-SPEN Journal, vol. 4, no. 3, pp. e134–e136, 2009. View at Google Scholar
  6. M. C. Allwood and M. C. J. Kearney, “Compatibility and stability of additives in parenteral nutrition admixtures,” Nutrition, vol. 14, no. 9, pp. 697–706, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hippalgaonkar, S. Majumdar, and V. Kansara, “Injectable lipid emulsions-advancements, opportunities and challenges,” AAPS PharmSciTech, vol. 11, no. 4, pp. 1526–1540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Freitas and R. H. Müller, “Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions,” International Journal of Pharmaceutics, vol. 168, no. 2, pp. 221–229, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Skouroliakou, C. Matthaiou, A. Chiou et al., “Physicochemical stability of parenteral nutrition supplied as all-in-one for neonates,” Journal of Parenteral and Enteral Nutrition, vol. 32, no. 2, pp. 201–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Gonyon, P. W. Carter, O. Dahlem, A. Denet, H. Owen, and J. Trouilly, “Container effects on the physicochemical properties of parenteral lipid emulsions,” Nutrition, vol. 24, no. 11-12, pp. 1182–1188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Bouchoud, F. Sadeghipour, M. Klingmüller, C. Fonzo-Christe, and P. Bonnabry, “Long-term physico-chemical stability of standard parenteral nutritions for neonates,” Clinical Nutrition, vol. 29, no. 6, pp. 808–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. I. G. Télessy, J. Balogh, J. Turmezei, J. Dredán, and R. Zelkó, “Stability assessment of o/w parenteral nutrition emulsions in the presence of high glucose and calcium concentrations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 56, no. 2, pp. 159–164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. F. Driscoll, K. Giampietro, D. P. Wichelhaus et al., “Physicochemical stability assessments of lipid emulsions of varying oil composition,” Clinical Nutrition, vol. 20, no. 2, pp. 151–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. I. G. Télessy, J. Balogh, F. Csempesz, V. Szente, J. Dredán, and R. Zelkó, “Comparison of the physicochemical properties of MCT-containing fat emulsions in total nutrient admixtures,” Colloids and Surfaces B, vol. 72, no. 1, pp. 75–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. F. Driscoll, J. Nehne, H. Peterss, K. Klütsch, B. R. Bistrian, and W. Niemann, “Physicochemical stability of intravenous lipid emulsions as all-in-one admixtures intended for the very young,” Clinical Nutrition, vol. 22, no. 5, pp. 489–495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Sforzini, G. Bersani, A. Stancari, G. Grossi, A. Bonoli, and G. C. Ceschel, “Analysis of all-in-one parenteral nutrition admixtures by liquid chromatography and laser diffraction: study of stability,” Journal of Pharmaceutical and Biomedical Analysis, vol. 24, no. 5-6, pp. 1099–1109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. J. Kearney, M. C. Allwood, T. Neale, and G. Hardy, “The stability of thiamine in total parenteral nutrition mixtures stored in EVA and multi-layered bags,” Clinical Nutrition, vol. 14, no. 5, pp. 295–301, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. M. D. Lee, J.-E. Yoon, S.-I. Kim, and I.-C. Kim, “Stability of total nutrient admixtures in reference to ambient temperatures,” Nutrition, vol. 19, no. 10, pp. 886–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Allwood and H. J. Martin, “The photodegradation of vitamins A and E in parenteral nutrition mixtures during infusion,” Clinical Nutrition, vol. 19, no. 5, pp. 339–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. Allwood, “Light protection during parenteral nutrition infusion: is it really necessary?” Nutrition, vol. 16, no. 3, pp. 234–235, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Washington, “Stability of lipid emulsions for drug delivery,” Advanced Drug Delivery Reviews, vol. 20, no. 2-3, pp. 131–145, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. D. O. Ribeiro, B. W. Lobo, N. M. Volpato, V. F. Da Veiga, L. M. Cabral, and V. P. De Sousa, “Influence of the calcium concentration in the presence of organic phosphorus on the physicochemical compatibility and stability of all-in-one admixtures for neonatal use,” Nutrition Journal, vol. 8, no. 1, pp. 51–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. D. O. Ribeiro, D. C. Pinto, L. M. T. R. Lima, N. M. Volpato, L. M. Cabral, and V. P. De Sousa, “Chemical stability study of vitamins thiamine, riboflavin, pyridoxine and ascorbic acid in parenteral nutrition for neonatal use,” Nutrition Journal, vol. 10, no. 1, p. 47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gorog, Ed., Identification and Determination of Impurities in Drugs, Elsevier, Amsterdam, The Netherlands, 2000.
  25. N. Marie, C. Verdier, B. Le Bot, and G. Burgot, “Analysis of sodium and potassium in total parenteral nutrition bags by ICP-MS and ICP-AES: critical influence of the ingredients,” American Journal of Analytical Chemistry, vol. 2, no. 5, pp. 573–581, 2001. View at Google Scholar
  26. F. G. Antes, M. F. Mesko, J. S. Barin, C. M. Moreira, E. M. M. Flores, and V. L. Dressler, “Development of multi-elemental method for quality control of parenteral component solutions using ICP-MS,” Microchemical Journal, vol. 98, no. 1, pp. 144–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. M. Flores, V. L. Dressle, S. Nussbaumer et al., “Determination of potassium, sodium, calcium and magnesium in total parenteral nutrition formulations by capillary electrophoresis with contactless conductivity detection,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 2, pp. 130–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Koberda, M. Konkowski, P. Youngberg, W. R. Jones, and A. Weston, “Capillary electrophoretic determination of alkali and alkaline-earth cations in various multiple electrolyte solutions for parenteral use,” Journal of Chromatography, vol. 602, no. 1-2, pp. 235–240, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Yang, M. Jimidar, T. P. Hamoir, J. Smeyers-Verbeke, and D. L. Massart, “Determination of alkali and alkaline earth metals in real samples by capillary ion analysis,” Journal of Chromatography A, vol. 673, no. 2, pp. 275–285, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Gochman and J. M. Schmitz, “Application of a new peroxide indicator reaction to the specific, automated determination of glucose with glucose oxidase,” Clinical Chemistry, vol. 18, no. 9, pp. 943–950, 1972. View at Google Scholar · View at Scopus
  31. D. Compagnone and G. G. Guilbault, “Glucose oxidase/hexokinase electrode for the determination of ATP,” Analytica Chimica Acta, vol. 340, no. 1–3, pp. 109–113, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. L. K. Fry and L. D. Stegink, “Formation of Maillard reaction products in parenteral alimentation solutions,” Journal of Nutrition, vol. 112, no. 8, pp. 1631–1637, 1982. View at Google Scholar · View at Scopus
  33. M. S. Iqbal, M. B. Bahari, Y. Darwis et al., “A RP-HPLC-UV method with solid phase extraction for determination of cefepime in Total Nutrient Admixtures: application to stability studies,” Current Pharmaceutical Analysis, vol. 8, no. 1, pp. 68–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Vazquez, R. Rotival, S. Calvez et al., “Stability indicating assay method on vitamins: application to their stability study in parenteral nutrition admixtures,” Chromatographia, vol. 69, no. 7-8, pp. 629–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. C. Allwood and H. Martin, “Stability of cocarboxylase in parenteral nutrition mixtures stored in multilayer bags,” Clinical Nutrition, vol. 17, no. 5, pp. 231–234, 1998. View at Google Scholar · View at Scopus
  36. E. Gibbons, M. C. Allwood, T. Neal, and G. Hardy, “Degradation of dehydroascorbic acid in parenteral nutrition mixtures,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 3-4, pp. 605–611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. T. G. Baumgartner, G. N. Henderson, J. Fox, and U. Gondi, “Stability of ranitidine and thiamine in parenteral nutrition solutions,” Nutrition, vol. 13, no. 6, pp. 547–553, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. C. S. Wade, V. Lampasona, R. E. Mullins, and R. B. Parks, “Stability of ceftazidime and amino acids in parenteral nutrient solutions,” American Journal of Hospital Pharmacy, vol. 48, no. 7, pp. 1515–1519, 1991. View at Google Scholar · View at Scopus
  39. J. M. Mirtallo, “Drug-nutrient interactions in patients receiving parenteral mutrition,” in Handbook of Drug-Nutrient Interactions, J. I. Boullata and V. T. Armenti, Eds., Humana Press, New York, NY, USA, 2nd edition, 2010. View at Google Scholar
  40. L. Bouchoud, C. Fonzo-Christe, M. Klingmüller, and P. Bonnabry, “Compatibility of intravenous medications with parenteral nutrition: in vitro evaluation,” Journal of Parenteral and Enteral Nutrition, vol. 37, no. 3, pp. 416–424, 2013. View at Publisher · View at Google Scholar
  41. P. Sabin, J. Monterde, D. Cardona, L. Lorente, and C. Pastor, “Incompatibilities between drugs and parenteral nutrition. Preliminary study,” The Farm Clinic, vol. 2, pp. 12–20, 1985. View at Google Scholar
  42. E. Muntada, J. Massó-Muniesa, A. Del Pozo et al., “Compatibility of drugs with total nutrient admixtures (TNA) containing different lipid emulsions,” Clinical Nutrition, vol. 22, supplement 1, p. S102, 2003. View at Google Scholar