Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 436517, 25 pages
http://dx.doi.org/10.1155/2013/436517
Review Article

Lignin: Characterization of a Multifaceted Crop Component

Division of Abiotic Stress Tolerance in Crops, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Straße 13, 53115 Bonn, Germany

Received 5 August 2013; Accepted 24 September 2013

Academic Editors: J. J. Loor, M. Nikolic, B. Uzun, L. Velasco, and B. R. Wilson

Copyright © 2013 Michael Frei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Sarkar, E. Bosneaga, and M. Auer, “Plant cell walls throughout evolution: towards a molecular understanding of their design principles,” Journal of Experimental Botany, vol. 60, no. 13, pp. 3615–3635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. D. Bonawitz and C. Chapple, “The genetics of lignin biosynthesis: connecting genotype to phenotype,” in Annual Review of Genetics, A. Campbell, M. Lichten, and G. Schupbach, Eds., vol. 44, pp. 337–363, 2010. View at Google Scholar
  3. E. M. Rubin, “Genomics of cellulosic biofuels,” Nature, vol. 454, no. 7206, pp. 841–845, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Magalhaes Silva Moura, C. A. Valencise Bonine, J. de Oliveira Fernandes Viana, M. C. Dornelas, and P. Mazzafera, “Abiotic and biotic stresses and changes in the lignin content and composition in plants,” Journal of Integrative Plant Biology, vol. 52, no. 4, pp. 360–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. L. Voelker, B. Lachenbruch, F. C. Meinzer, P. Kitin, and S. H. Strauss, “Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival,” Plant, Cell and Environment, vol. 34, no. 4, pp. 655–668, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Zhao and R. A. Dixon, “Transcriptional networks for lignin biosynthesis: more complex than we thought?” Trends in Plant Science, vol. 16, no. 4, pp. 227–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, and M. Poliakoff, “Valorization of biomass: deriving more value from waste,” Science, vol. 337, pp. 695–699, 2012. View at Google Scholar
  8. R. Lal, “World crop residues production and implications of its use as a biofuel,” Environment International, vol. 31, no. 4, pp. 575–584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Somerville, H. Youngs, C. Taylor, S. C. Davis, and S. P. Long, “Feedstocks for lignocellulosic biofuels,” Science, vol. 329, no. 5993, pp. 790–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Vogt, “Phenylpropanoid biosynthesis,” Molecular Plant, vol. 3, no. 1, pp. 2–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Liu, “Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly,” Molecular Plant, vol. 5, no. 2, pp. 304–317, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Suzuki, S. Koussevitzky, R. Mittler, and G. Miller, “ROS and redox signalling in the response of plants to abiotic stress,” Plant, Cell and Environment, vol. 35, no. 2, pp. 259–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Almagro, L. V. G. Ros, S. Belchi-Navarro, R. Bru, A. R. Barceló, and M. A. Pedreño, “Class III peroxidases in plant defence reactions,” Journal of Experimental Botany, vol. 60, no. 2, pp. 377–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. O'Brien, A. Daudi, V. S. Butt, and G. P. Bolwell, “Reactive oxygen species and their role in plant defence and cell wall metabolism,” Planta, vol. 236, pp. 765–779, 2012. View at Google Scholar
  15. K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction,” Annual Review of Plant Biology, vol. 55, pp. 373–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Vanholme, B. Demedts, K. Morreel, J. Ralph, and W. Boerjan, “Lignin biosynthesis and structure,” Plant Physiology, vol. 153, no. 3, pp. 895–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. C. Carpita, “Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy,” Current Opinion in Biotechnology, vol. 23, pp. 330–337, 2011. View at Google Scholar
  18. R. S. Fukushima and R. D. Hatfield, “Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples,” Journal of Agricultural and Food Chemistry, vol. 52, no. 12, pp. 3713–3720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. G. G. Allison, C. Morris, J. Clifton-Brown, S. J. Lister, and I. S. Donnison, “Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus,” Biomass & Bioenergy, vol. 35, no. 11, pp. 4740–4747, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. E. Jahn, J. K. Mckay, R. Mauleon et al., “Genetic variation in biomass traits among 20 diverse rice varieties,” Plant Physiology, vol. 155, no. 1, pp. 157–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Sakiroglu, K. J. Moore, and E. C. Brummer, “Variation in biomass yield, cell wall components, and agronomic traits in a broad range of diploid alfalfa accessions,” Crop Science, vol. 51, no. 5, pp. 1956–1964, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Kramer, M. R. Weisbjerg, P. Lund, C. S. Jensen, and M. G. Pedersen, “Estimation of indigestible NDF in forages and concentrates from cell wall composition,” Animal Feed Science and Technology, vol. 177, pp. 40–51, 2012. View at Google Scholar
  23. J. B. Lowry, L. L. Conlan, A. C. Schlink, and C. S. McSweeney, “Acid detergent dispersible lignin in tropical grasses,” Journal of the Science of Food and Agriculture, vol. 65, pp. 41–49, 1994. View at Google Scholar
  24. P. M. Schwab, J. F. S. Lamb, C. C. Sheaffer, and D. K. Barnes, “Germplasm variability and environmental effects on stem cellulose and lignin concentrations in Alfalfa,” Journal of Agronomy and Crop Science, vol. 191, no. 5, pp. 386–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Wilman and P. R. Moghaddam, “In vitro digestibility and neutral detergent fibre and lignin contents of plant parts of nine forage species,” Journal of Agricultural Science, vol. 131, no. 1, pp. 51–58, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. K. E. B. Knudsen, “Carbohydrate and lignin contents of plant materials used in animal feeding,” Animal Feed Science and Technology, vol. 67, no. 4, pp. 319–338, 1997. View at Google Scholar · View at Scopus
  27. A. D. Iwaasa, K. A. Beauchemin, J. G. Buchanan-Smith, and S. N. Acharya, “Effect of stage of maturity and growth cycle on shearing force and cell wall chemical constituents of alfalfa stems,” Canadian Journal of Animal Science, vol. 76, no. 3, pp. 321–328, 1996. View at Google Scholar · View at Scopus
  28. D. G. Armstrong, H. Cook, and B. Thomas, “The lignin and cellulose contents of certain grassland species at different stages of growth,” Journal of Agricultural Science, vol. 40, pp. 93–99, 1950. View at Google Scholar
  29. G. G. McBee and F. R. Miller, “Stem carbohydrate and lignin concentrations in sorghum hybrids at 7 growth-stages,” Crop Science, vol. 33, pp. 530–534, 1993. View at Google Scholar
  30. Y. Arai-Sanoh, M. Ida, R. Zhao et al., “Genotypic variations in non-structural carbohydrate and cell-wall components of the stem in rice, sorghum, and sugar vane,” Bioscience, Biotechnology and Biochemistry, vol. 75, no. 6, pp. 1104–1112, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Abiven, A. Heim, and M. W. I. Schmidt, “Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: consequences for assessing lignin dynamics in soil,” Plant and Soil, vol. 343, no. 1-2, pp. 369–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Frei, H. P. S. Makkar, K. Becker, and M. Wissuwa, “Ozone exposure during growth affects the feeding value of rice shoots,” Animal Feed Science and Technology, vol. 155, no. 1, pp. 74–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Wang and M. Frei, “Stressed food—the impact of abiotic environmental stresses on crop quality,” Agriculture, Ecosystems & Environment, vol. 141, no. 3-4, pp. 271–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Frei, Y. Kohno, M. Wissuwa, H. P. S. Makkar, and K. Becker, “Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL,” Global Change Biology, vol. 17, no. 7, pp. 2319–2329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Hatfield and R. S. Fukushima, “Can lignin be accurately measured?” Crop Science, vol. 45, no. 3, pp. 832–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. M. Goff, P. T. Murphy, and K. J. Moore, “Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials,” Journal of the Science of Food and Agriculture, vol. 92, no. 4, pp. 751–758, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Brinkmann, L. Blaschke, and A. Polle, “Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins,” Journal of Chemical Ecology, vol. 28, no. 12, pp. 2483–2501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. R. R. Stange Jr. and R. E. McDonald, “A simple and rapid method for determination of lignin in plant tissues—its usefulness in elicitor screening and comparison to the thioglycolic acid method,” Postharvest Biology and Technology, vol. 15, no. 2, pp. 185–193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. P. J. Vansoest, J. B. Robertson, and B. A. Lewis, “Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition,” Journal of Dairy Science, vol. 74, no. 10, pp. 3583–3597, 1991. View at Google Scholar · View at Scopus
  40. K. H. Südekum, K. Voigt, B. Monties, and M. Stangassinger, “Spectrophotometric investigations on lignin in wheat (Triticum aestivum L.): influence of cell wall preparation, solvent, and standard,” Journal of Agricultural and Food Chemistry, vol. 45, no. 4, pp. 1220–1228, 1997. View at Google Scholar · View at Scopus
  41. J. B. Sluiter, R. O. Ruiz, C. J. Scarlata, A. D. Sluiter, and D. W. Templeton, “Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods,” Journal of Agricultural and Food Chemistry, vol. 58, no. 16, pp. 9043–9053, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Suzuki, Y. Suzuki, N. Yamamoto, T. Hattori, M. Sakamoto, and T. Umezawa, “High-throughput determination of thioglycolic acid lignin from rice,” Plant Biotechnology, vol. 26, no. 3, pp. 337–340, 2009. View at Google Scholar · View at Scopus
  43. R. S. Fukushima and B. A. Dehority, “Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses,” Journal of Animal Science, vol. 78, no. 12, pp. 3135–3143, 2000. View at Google Scholar · View at Scopus
  44. C. Huang, L. Han, X. Liu, and L. Ma, “The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy,” Energy Sources A, vol. 33, no. 2, pp. 114–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. H. J. G. Jung, “Analysis of forage fiber and cell walls in ruminant nutrition,” Journal of Nutrition, vol. 127, supplement 5, pp. S810–S813, 1997. View at Google Scholar · View at Scopus
  46. J. F. Pedersen, K. P. Vogel, and D. L. Funnell, “Impact of reduced lignin on plant fitness,” Crop Science, vol. 45, no. 3, pp. 812–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. D. Casler, D. R. Buxton, and K. P. Vogel, “Genetic modification of lignin concentration affects fitness of perennial herbaceous plants,” Theoretical and Applied Genetics, vol. 104, no. 1, pp. 127–131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. B. R. Lee, K. Y. Kim, W. J. Jung, J. C. Avice, A. Ourry, and T. H. Kim, “Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.),” Journal of Experimental Botany, vol. 58, no. 6, pp. 1271–1279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. P. R. Peterson, C. C. Sheaffer, and M. H. Hall, “Drought effects on perennial forage legume yield and quality,” Agronomy Journal, vol. 84, pp. 774–779, 1992. View at Google Scholar
  50. H. V. Petit, A. R. Pesant, G. M. Barnett, W. N. Mason, and J. L. Dionne, “Quality and morphological-characteristics of alfalfa as affected by soil-moisture, ph and phosphorus fertilization,” Canadian Journal of Plant Science, vol. 72, pp. 147–162, 1992. View at Google Scholar
  51. D. A. Deetz, H. G. Jung, and D. R. Buxton, “Water-deficit effects on cell-wall composition and in vitro degradability of structural polysaccharides from alfalfa stems,” Crop Science, vol. 36, no. 2, pp. 383–388, 1996. View at Google Scholar · View at Scopus
  52. M. L. Fiasconaro, Y. Gogorcena, F. Munoz, D. Andueza, M. Sanchez-Diaz, and M. C. Antolin, “Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants,” Plant Science, vol. 191, pp. 16–23, 2012. View at Google Scholar
  53. B. R. Lee, S. Muneer, W. J. Jung, J. C. Avice, A. Ourry, and T.-H. Kim, “Mycorrhizal colonization alleviates drought-induced oxidative damage and lignification in the leaves of drought-stressed perennial ryegrass (Lolium perenne),” Physiologia Plantarum, vol. 145, pp. 440–449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. O. Guenni, D. Marín, and Z. Baruch, “Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality,” Plant and Soil, vol. 243, no. 2, pp. 229–241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Jiang, Y. Yao, and Y. Wang, “Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery,” Crop Science, vol. 52, pp. 2718–2727, 2012. View at Google Scholar
  56. Y. Hu, W. C. Li, Y. Q. Xu, G. J. Li, Y. Liao, and F. L. Fu, “Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves,” Journal of Applied Genetics, vol. 50, no. 3, pp. 213–223, 2009. View at Google Scholar · View at Scopus
  57. D. Vincent, C. Lapierre, B. Pollet, G. Cornic, L. Negroni, and M. Zivy, “Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation,” Plant Physiology, vol. 137, no. 3, pp. 949–960, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Leinhos and H. Bergmann, “Changes in the yield, lignin content and protein patterns of barley (Hordeum vulgare cv Alexis) induced by drought stress,” Journal of Applied Botany, vol. 69, pp. 206–210, 1995. View at Google Scholar
  59. H. Mahmoudi, J. Huang, M. Y. Gruber et al., “The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce,” Journal of Agricultural and Food Chemistry, vol. 58, no. 8, pp. 5122–5130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Sánchez-Aguayo, J. M. Rodríguez-Galán, R. García, J. Torreblanca, and J. M. Pardo, “Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants,” Planta, vol. 220, no. 2, pp. 278–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Peyrano, E. Taleisnik, M. Quiroga, S. M. de Forchetti, and H. Tigier, “Salinity effects on hydraulic conductance, lignin content and peroxidase activity in tomato roots,” Plant Physiology and Biochemistry, vol. 35, no. 5, pp. 387–393, 1997. View at Google Scholar · View at Scopus
  62. P. Cachorro, A. Ortiz, A. R. Barcelo, and A. Cerda, “Lignin deposition in vascular tissues of phaseolus-ulgaris roots in response to salt stress and CA2+ ions,” Phyton-Annales Rei Botanicae, vol. 33, pp. 33–40, 1993. View at Google Scholar
  63. I. Karahara, A. Ikeda, T. Kondo, and Y. Uetake, “Development of the Casparian strip in primary roots of maize under salt stress,” Planta, vol. 219, no. 1, pp. 41–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. H. M. Wang, L. Zhou, Y. P. Fu et al., “Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress,” Plant Cell and Environment, vol. 35, pp. 1932–1947, 2012. View at Google Scholar
  65. C. C. Lin and C. H. Kao, “Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings,” Journal of Plant Physiology, vol. 158, no. 5, pp. 667–671, 2001. View at Google Scholar · View at Scopus
  66. G. Y. S. Neves, R. Marchiosi, M. L. L. Ferrarese, R. C. Siqueira-Soares, and O. Ferrarese-Filho, “Root growth inhibition and lignification induced by salt stress in soybean,” Journal of Agronomy and Crop Science, vol. 196, no. 6, pp. 467–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Kováčik, F. Štork, B. Klejdus, J. Grúz, and J. Hedbavny, “Effect of metabolic regulators on aluminium uptake and toxicity in Matricaria chamomilla plants,” Plant Physiology and Biochemistry, vol. 54, pp. 140–148, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Ma, L. Gao, H. Zhang, J. Cui, and Z. Shen, “Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance,” Plant Cell Reports, vol. 31, no. 4, pp. 687–696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. M. A. Hossain, A. K. M. Z. Hossain, T. Kihara, H. Koyama, and T. Hara, “Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings,” Soil Science and Plant Nutrition, vol. 51, no. 2, pp. 223–230, 2005. View at Google Scholar · View at Scopus
  70. M. Sasaki, Y. Yamamoto, and H. Matsumoto, “Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots,” Physiologia Plantarum, vol. 96, no. 2, pp. 193–198, 1996. View at Google Scholar · View at Scopus
  71. M. D. Heidarabadi, F. Ghanati, and T. Fujiwara, “Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots,” Plant Physiology and Biochemistry, vol. 49, no. 12, pp. 1377–1383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Finger-Teixeira, M. D. L. Lucio Ferrarese, A. R. Soares, D. da Silva, and O. Ferrarese-Filho, “Cadmium-induced lignification restricts soybean root growth,” Ecotoxicology and Environmental Safety, vol. 73, no. 8, pp. 1959–1964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. C. C. Lin, L. M. Chen, and Z. H. Liu, “Rapid effect of copper on lignin biosynthesis in soybean roots,” Plant Science, vol. 168, no. 3, pp. 855–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. L. M. Cervilla, M. A. Rosales, M. M. Rubio-Wilhelmi et al., “Involvement of lignification and membrane permeability in the tomato root response to boron toxicity,” Plant Science, vol. 176, no. 4, pp. 545–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. P. H. Brown, R. D. Graham, and D. J. D. Nicholas, “The effects of manganese and nitrate supply on the levels of phenolics and lignin in young wheat plants,” Plant and Soil, vol. 81, pp. 437–440, 1984. View at Google Scholar
  76. Z. Rengel, R. D. Graham, and J. F. Pedler, “Time-course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus,” Annals of Botany, vol. 74, no. 5, pp. 471–477, 1994. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Kováčik, B. Klejdus, F. Štork, and J. Hedbavny, “Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants,” Journal of Agricultural and Food Chemistry, vol. 59, no. 9, pp. 5139–5149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Fritz, N. Palacios-Rojas, R. Feil, and M. Stitt, “Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism,” Plant Journal, vol. 46, no. 4, pp. 533–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. A. F. Teixeira, A. D. B. Andrade, O. Ferrarese-Filho, and M. D. L. Ferrarese, “Role of calcium on phenolic compounds and enzymes related to lignification in soybean (Glycine max L.) root growth,” Plant Growth Regulation, vol. 49, no. 1, pp. 69–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. W. H. Eppendorfer and B. O. Eggum, “Effects of sulphur, nitrogen, phosphorus, potassium, and water stress on dietary fibre fractions, starch, amino acids and on the biological value of potato protein,” Plant Foods for Human Nutrition, vol. 45, no. 4, pp. 299–313, 1994. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Suzuki, J. F. Ma, N. Yamamoto, T. Hattori, M. Sakamoto, and T. Umezawa, “Silicon deficiency promotes lignin accumulation in rice,” Plant Biotechnology, vol. 29, pp. 391–394, 2012. View at Google Scholar
  82. M. Frei, M. Wissuwa, J. Pariasca-Tanaka, C. P. Chen, K.-H. Südekum, and Y. Kohno, “Leaf ascorbic acid level—is it really important for ozone tolerance in rice?” Plant Physiology and Biochemistry, vol. 59, pp. 63–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Sanz, R. B. Muntifering, V. Bermejo, B. S. Gimeno, and S. Elvira, “Ozone and increased nitrogen supply effects on the yield and nutritive quality of Trifolium subterraneum,” Atmospheric Environment, vol. 39, no. 32, pp. 5899–5907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. R. B. Muntifering, A. H. Chappelka, J. C. Lin, D. F. Karnosky, and G. L. Somers, “Chemical composition and digestibility of Trifolium exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation system,” Functional Ecology, vol. 20, no. 2, pp. 269–275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. R. B. Muntifering, D. D. Crosby, M. C. Powell, and A. H. Chappelka, “Yield and quality characteristics of bahiagrass (Paspalum notatum) exposed to ground-level ozone,” Animal Feed Science and Technology, vol. 84, no. 3-4, pp. 243–256, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. M. C. Powell, R. B. Muntifering, J. C. Lin, and A. H. Chappelka, “Yield and nutritive quality of sericea lespedeza (Lespedeza cuneata) and little bluestem (Schizachyrium scoparium) exposed to ground-level ozone,” Environmental Pollution, vol. 122, no. 3, pp. 313–322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Bender, R. B. Muntifering, J. C. Lin, and H. J. Weigel, “Growth and nutritive quality of Poa pratensis as influenced by ozone and competition,” Environmental Pollution, vol. 142, no. 1, pp. 109–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Rozema, M. Tosserams, H. J. M. Nelissen, L. van Heerwaarden, R. A. Broekman, and N. Flierman, “Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species Calamagrostis epigeios,” Plant Ecology, vol. 128, no. 1-2, pp. 284–294, 1997. View at Google Scholar · View at Scopus
  89. M. T. Charles, A. Goulet, and J. Arul, “Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. IV. Biochemical modification of structural barriers,” Postharvest Biology and Technology, vol. 47, no. 1, pp. 41–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Yamasaki, N. Noguchi, and K. Mimaki, “Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons,” Journal of Radiation Research, vol. 48, no. 6, pp. 443–454, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Hilal, M. F. Parrado, M. Rosa et al., “Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation,” Photochemistry and Photobiology, vol. 79, pp. 205–210, 2004. View at Google Scholar
  92. J. A. Zavala, A. L. Scopel, and C. L. Ballaré, “Effects of ambient UV-B radiation on soybean crops: impact on leaf herbivory by Anticarsia gemmatalis,” Plant Ecology, vol. 156, no. 2, pp. 121–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. A.-R. Ballester, M. T. Lafuente, J. Forment et al., “Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance,” Molecular Plant Pathology, vol. 12, no. 9, pp. 879–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. M. C. Valentines, R. Vilaplana, R. Torres, J. Usall, and C. Larrigaudière, “Specific roles of enzymatic browning and lignification in apple disease resistance,” Postharvest Biology and Technology, vol. 36, no. 3, pp. 227–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. N. H. Bhuiyan, G. Selvaraj, Y. Wei, and J. King, “Role of lignification in plant defense,” Plant Signaling & Behavior, vol. 4, no. 2, pp. 158–159, 2009. View at Google Scholar · View at Scopus
  96. N. H. Bhuiyan, G. Selvaraj, Y. Wei, and J. King, “Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion,” Journal of Experimental Botany, vol. 60, no. 2, pp. 509–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Bi, F. Chen, L. Jackson, B. S. Gill, and W. Li, “Expression of lignin biosynthetic genes in wheat during development and upon infection by fungal pathogens,” Plant Molecular Biology Reporter, vol. 29, no. 1, pp. 149–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. L. G. Dushnicky, G. M. Ballance, M. J. Sumner, and A. W. MacGregor, “The role of lignification as a resistance mechanism in wheat to a toxin-producing isolate of Pyrenophora tritici-repentis,” Canadian Journal of Plant Pathology, vol. 20, no. 1, pp. 35–47, 1998. View at Google Scholar · View at Scopus
  99. H. Wang, J. Hao, X. Chen et al., “Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants,” Plant Molecular Biology, vol. 65, no. 6, pp. 799–815, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. W. Sun, J. Zhang, Q. Fan, G. Xue, Z. Li, and Y. Liang, “Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier,” European Journal of Plant Pathology, vol. 128, no. 1, pp. 39–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. P. M. Dracatos, N. O. I. Cogan, M. P. Dobrowolski et al., “Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.),” Theoretical and Applied Genetics, vol. 117, no. 2, pp. 203–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Eynck, G. Séguin-Swartz, W. E. Clarke, and I. A. P. Parkin, “Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa,” Molecular Plant Pathology, vol. 13, pp. 887–899, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Guillaumie, R. Mzid, V. Méchin et al., “The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco,” Plant Molecular Biology, vol. 72, no. 1-2, pp. 215–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Mzid, C. Marchive, D. Blancard et al., “Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens,” Physiologia Plantarum, vol. 131, no. 3, pp. 434–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. L. G. Kamphuis, A. H. Williams, H. Küster et al., “Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula,” Molecular Plant Pathology, vol. 13, pp. 593–603, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Kozlowska and Z. Krzywanski, “Lignification in red raspberry canes upon wounding and fungal infection,” Acta Physiologiae Plantarum, vol. 13, pp. 115–121, 1991. View at Google Scholar
  107. A. V. Lygin, S. Li, R. Vittal, J. M. Widholm, G. L. Hartman, and V. V. Lozovaya, “The importance of phenolic metabolism to limit the growth of Phakopsora pachyrhizi,” Phytopathology, vol. 99, no. 12, pp. 1412–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Shi, Z. Liu, L. Zhu et al., “Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae,” Acta Biochimica et Biophysica Sinica, vol. 44, pp. 555–564, 2012. View at Google Scholar
  109. K. A. M. Abo-Elyousr, M. Hashem, and E. H. Ali, “Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers,” Crop Protection, vol. 28, no. 4, pp. 295–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Xu, L. Zhu, L. Tu et al., “Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry,” Journal of Experimental Botany, vol. 62, no. 15, pp. 5607–5621, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. G. S. Wu, B. J. Shortt, E. B. Lawrence et al., “Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants,” Plant Physiology, vol. 115, no. 2, pp. 427–435, 1997. View at Google Scholar · View at Scopus
  112. A. B. Andreu, M. G. Guevara, E. A. Wolski, G. R. Daleo, and D. O. Caldiz, “Enhancement of natural disease resistance in potatoes by chemicals,” Pest Management Science, vol. 62, no. 2, pp. 162–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. O. Wally and Z. K. Punja, “Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over-expressing a rice cationic peroxidase,” Planta, vol. 232, no. 5, pp. 1229–1239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. B. Garrod, R. G. Lewis, M. J. Brittain, and W. P. Davies, “Studies on the contribution of lignin and suberin to the impedance of wounded carrot root-tissue to fungal invasion,” New Phytologist, vol. 90, pp. 99–108, 1982. View at Google Scholar
  115. S. Mandal and A. Mitra, “Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors,” Physiological and Molecular Plant Pathology, vol. 71, no. 4–6, pp. 201–209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. K. C. Nagarathna, S. A. Shetty, and H. S. Shetty, “Phenylalanine ammonia lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance,” Journal of Experimental Botany, vol. 44, no. 8, pp. 1291–1296, 1993. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Nandini, J. S. S. Mohan, and G. Singh, “Induction of systemic acquired resistance in arachis hypogaea l. by sclerotium rolfsii derived elicitors,” Journal of Phytopathology, vol. 158, no. 9, pp. 594–600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. F. Pomar, M. Novo, M. A. Bernal, F. Merino, and A. R. Barceló, “Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum,” New Phytologist, vol. 163, no. 1, pp. 111–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Siegrist, W. Jeblick, and H. Kauss, “Defense responses in infected and elicited cucumber (Cucumis sativus L.) hypocotyl segments exhibiting acquired resistance,” Plant Physiology, vol. 105, no. 4, pp. 1365–1374, 1994. View at Google Scholar · View at Scopus
  120. P. Vidhyasekaran, N. Kamala, A. Ramanathan, K. Rajappan, V. Paranidharan, and R. Velazhahan, “Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. Oryzae in rice leaves,” Phytoparasitica, vol. 29, no. 2, pp. 155–166, 2001. View at Google Scholar · View at Scopus
  121. M. Elfstrand, F. Sitbon, C. Lapierre, A. Bottin, and S. von Arnold, “Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants,” Planta, vol. 214, no. 5, pp. 708–716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Ishihara, I. Mitsuhara, H. Takahashi, and K. Nakaho, “Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato,” PLoS ONE, vol. 7, no. 10, Article ID e46763, 2012. View at Google Scholar
  123. R. Fogain and S. R. Gowen, “Investigations on possible mechanisms of resistance to nematodes in Musa,” Euphytica, vol. 92, no. 3, pp. 375–381, 1996. View at Google Scholar · View at Scopus
  124. R. S. Kavitha, T. N. Balamohan, M. Kavitha, and B. S. Selvi, “Biochemical interactions of banana hybrids to root lesion nematodes (Pratylenchus coffeae),” Plant Archives, vol. 8, pp. 105–110, 2008. View at Google Scholar
  125. C. Valette, C. Andary, J. P. Geiger, J. L. Sarah, and M. Nicole, “Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis,” Phytopathology, vol. 88, no. 11, pp. 1141–1148, 1998. View at Google Scholar · View at Scopus
  126. G. Zacheo, T. Bleve-Zacheo, D. Pacoda, C. Orlando, and R. D. Durbin, “The association between heat-induced susceptibility of tomato to Meloidogyne incognita and peroxidase activity,” Physiological and Molecular Plant Pathology, vol. 46, no. 6, pp. 491–507, 1995. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Ithal, J. Recknor, D. Nettleton et al., “Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean,” Molecular Plant-Microbe Interactions, vol. 20, no. 3, pp. 293–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Barros-Rios, R. A. Malvar, H.-J. G. Jung, and R. Santiago, “Cell wall composition as a maize defense mechanism against corn borers,” Phytochemistry, vol. 72, no. 4-5, pp. 365–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. H. H. Beeghly, J. G. Coors, and M. Lee, “Plant fiber composition and resistance to European corn borer in four maize populations,” Maydica, vol. 42, no. 3, pp. 297–303, 1997. View at Google Scholar · View at Scopus
  130. S. N. Johnson, P. D. Hallett, T. L. Gillespie, and C. Halpin, “Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco,” Physiological Entomology, vol. 35, no. 2, pp. 186–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Loranger, S. T. Meyer, B. Shipley et al., “Predicting invertebrate herbivory from plant traits: evidence from 51 grassland species in experimental monocultures,” Ecology, vol. 93, pp. 2674–2682, 2012. View at Google Scholar
  132. V. Méchin, O. Argillier, Y. Hébert et al., “Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize,” Crop Science, vol. 41, no. 3, pp. 690–697, 2001. View at Google Scholar · View at Scopus
  133. V. Roussel, C. Gibelin, A. S. Fontaine, and Y. Barrière, “Genetic analysis in recombinant inbred lines of early dent forage maize. II—QTL mapping for cell wall constituents and cell wall digestibility from per se value and top cross experiments,” Maydica, vol. 47, no. 1, pp. 9–20, 2002. View at Google Scholar · View at Scopus
  134. A. J. Cardinal, M. Lee, and K. J. Moore, “Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize,” Theoretical and Applied Genetics, vol. 106, no. 5, pp. 866–874, 2003. View at Google Scholar · View at Scopus
  135. M. D. Krakowsky, M. Lee, and J. G. Coors, “Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue,” Theoretical and Applied Genetics, vol. 111, no. 2, pp. 337–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. M. D. Krakowsky, M. Lee, and J. G. Coors, “Quantitative trait loci for cell wall components in recombinant inbred lines of maize (Zea mays L.) II: leaf sheath tissue,” Theoretical and Applied Genetics, vol. 112, no. 4, pp. 717–726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. Y. Barrière, J. Thomas, and D. Denoue, “QTL mapping for lignin content, lignin monomeric composition, p-hydroxycinnamate content, and cell wall digestibility in the maize recombinant inbred line progeny F838 × F286,” Plant Science, vol. 175, no. 4, pp. 585–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. C. Riboulet, F. Fabre, D. Dénoue, J. P. Martinantä, B. Lefèvre, and Y. Barrière, “QTL mapping and candidate gene research for lignin content and cell wall digestibility in a top-cross of a flint maize recombinant inbred line progeny harvested at silage stage,” Maydica, vol. 53, no. 1, pp. 1–9, 2008. View at Google Scholar · View at Scopus
  139. Y. Barrière, V. Méchin, D. Denoue, C. Bauland, and J. Laborde, “QTL for yield, earliness, and cell wall quality traits in topcross experiments of the F838 × F286 early maize RIL progeny,” Crop Science, vol. 50, no. 5, pp. 1761–1772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. R. E. Lorenzana, M. F. Lewis, H.-J. G. Jung, and R. Bernardo, “Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol,” Crop Science, vol. 50, no. 2, pp. 541–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. A. J. Lorenz, J. G. Coors, C. N. Hansey, S. M. Kaeppler, and N. de Leon, “Genetic analysis of cell wall traits relevant to cellulosic ethanol production in maize (Zea mays L.),” Crop Science, vol. 50, no. 3, pp. 842–852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. Y. Barrière, V. Méchin, B. Lefevre, and S. Maltese, “QTLs for agronomic and cell wall traits in a maize RIL progeny derived from a cross between an old Minnesota13 line and a modern Iodent line,” Theoretical and Applied Genetics, vol. 125, pp. 531–549, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Grando, M. Baum, S. Ceccarelli et al., “QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment,” Theoretical and Applied Genetics, vol. 110, no. 4, pp. 688–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. B. A. Siahsar, S. A. Peighambari, A. R. Taleii, M. R. Naghavi, A. Nabipour, and A. Sarrafi, “QTL analysis of forage quality traits in barley (Hordeum vulgare L.),” Cereal Research Communications, vol. 37, pp. 479–488, 2009. View at Google Scholar
  145. S. C. Murray, W. L. Rooney, S. E. Mitchell et al., “Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates,” Crop Science, vol. 48, no. 6, pp. 2180–2193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. A. L. Shiringani and W. Friedt, “QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop,” Theoretical and Applied Genetics, vol. 123, no. 6, pp. 999–1011, 2011. View at Google Scholar · View at Scopus
  147. J. S. Bao, L. Jin, Y. Shen, and J. K. Xie, “Genetic mapping of quantitative trait loci associated with fiber and lignin content in rice,” Cereal Research Communications, vol. 35, no. 1, pp. 23–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. J.-K. Xie, X.-L. Kong, J. Chen et al., “Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa × Oryza rufipogon,” Journal of Zhejiang University B, vol. 12, no. 7, pp. 518–526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Liu, A. Stein, B. Wittkop et al., “A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds,” Theoretical and Applied Genetics, vol. 124, pp. 1573–1586, 2012. View at Publisher · View at Google Scholar · View at Scopus
  150. W. Vermerris, D. M. Sherman, and L. M. McIntyre, “Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition,” Journal of Experimental Botany, vol. 61, no. 9, pp. 2479–2490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. Y.-H. Kim, C. Y. Kim, W.-K. Song et al., “Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco,” Planta, vol. 227, no. 4, pp. 867–881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. L. Gallego-Giraldo, Y. Jikumaru, Y. Kamiya, Y. Tang, and R. A. Dixon, “Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.),” New Phytologist, vol. 190, no. 3, pp. 627–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. L. Schreiber, “Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin,” Planta, vol. 199, no. 4, pp. 596–601, 1996. View at Google Scholar · View at Scopus
  154. E. Hose, D. T. Clarkson, E. Steudle, L. Schreiber, and W. Hartung, “The exodermis: a variable apoplastic barrier,” Journal of Experimental Botany, vol. 52, no. 365, pp. 2245–2264, 2001. View at Google Scholar · View at Scopus
  155. S. Naseer, Y. Lee, C. Lapierre, R. Franke, C. Nawrath, and N. Geldner, “Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 10101–10106, 2012. View at Google Scholar
  156. J. Kovacik, B. Klejdus, J. Hedbavny, F. Stork, and J. Gruz, “Modulation of copper uptake and toxicity by abiotic stresses in Matricaria chamomilla plants,” Journal of Agricultural and Food Chemistry, vol. 60, pp. 6755–6763, 2012. View at Google Scholar
  157. J. E. van de Mortel, L. A. Villanueva, H. Schat et al., “Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens,” Plant Physiology, vol. 142, no. 3, pp. 1127–1147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. H. Matsumoto and H. Motoda, “Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress,” Plant Science, vol. 185–186, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. C. Dordas, “Role of nutrients in controlling plant diseases in sustainable agriculture. A review,” Agronomy for Sustainable Development, vol. 28, no. 1, pp. 33–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. B. R. Hames, B. Kurek, B. Pollet, C. Lapierre, and B. Monties, “Interaction between MnO2 and oxalate: formation of a natural and abiotic lignin oxidizing system,” Journal of Agricultural and Food Chemistry, vol. 46, no. 12, pp. 5362–5367, 1998. View at Google Scholar · View at Scopus
  161. M. Baier, A. Kandlbinder, D. Golldack, and K. J. Dietz, “Oxidative stress and ozone: perception, signalling and response,” Plant, Cell and Environment, vol. 28, no. 8, pp. 1012–1020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. E. L. Fiscus, F. L. Booker, and K. O. Burkey, “Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning,” Plant, Cell and Environment, vol. 28, no. 8, pp. 997–1011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Kangasjärvi, P. Jaspers, and H. Kollist, “Signalling and cell death in ozone-exposed plants,” Plant, Cell and Environment, vol. 28, no. 8, pp. 1021–1036, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Frei, J. P. Tanaka, C. P. Chen, and M. Wissuwa, “Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses,” Journal of Experimental Botany, vol. 61, no. 5, pp. 1405–1417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. L. Guidi, E. Degl'Innocenti, S. Genovesi, and G. F. Soldatini, “Photosynthetic process and activities of enzymes involved in the phenylpropanoid pathway in resistant and sensitive genotypes of Lycopersicon esculentum L. exposed to ozone,” Plant Science, vol. 168, no. 1, pp. 153–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Davidson and M. Phillips, “Lignin as a possible factor in lodging of cereals,” Science, vol. 72, no. 1868, pp. 401–402, 1930. View at Google Scholar · View at Scopus
  167. Q.-H. Ma, “Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat,” Journal of Experimental Botany, vol. 61, no. 10, pp. 2735–2744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. Q.-H. Ma, “The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance,” Journal of Experimental Botany, vol. 60, no. 9, pp. 2763–2771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. S. Banniza, P. Hashemi, T. D. Warkentin, A. Vandenberg, and A. R. Davis, “The relationships among lodging, stem anatomy, degree of lignification, and resistance to mycosphaerella blight in field pea (Pisum sativum),” Canadian Journal of Botany, vol. 83, no. 8, pp. 954–967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. M. Inoue, Z. S. Gao, and H. W. Cai, “QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.),” Theoretical and Applied Genetics, vol. 109, no. 8, pp. 1576–1585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. T. Ookawa and K. Ishihara, “Varietal difference of the cell wall components affecting the bending stress of the culm in relation to the lodging resistance in paddy rice,” Japanese Journal of Crop Science, vol. 62, no. 3, pp. 378–384, 1993. View at Google Scholar · View at Scopus
  172. A. J. Travis, S. D. Murison, D. J. Hirst, K. C. Walker, and A. Chesson, “Comparison of the anatomy and degradability of straw from varieties of wheat and barley that differ in susceptibility to lodging,” Journal of Agricultural Science, vol. 127, no. 1, pp. 1–10, 1996. View at Google Scholar · View at Scopus
  173. J. Wang, J. Zhu, R. Huang, and Y. Yang, “Investigation of cell wall composition related to stem lodging resistance in wheat (Triticum aestivum L. by FTIR spectroscopy),” Plant Signaling & Behavior, vol. 7, pp. 856–863, 2012. View at Google Scholar
  174. S. E. Sattler, D. L. Funnell-Harris, and J. F. Pedersen, “Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues,” Plant Science, vol. 178, no. 3, pp. 229–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Ching, K. S. Dhugga, L. Appenzeller et al., “Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls,” Planta, vol. 224, no. 5, pp. 1174–1184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. C. P. Vance, T. K. Kirk, and R. T. Sherwood, “Lignification as a mechanism of disease resistance,” Annual Review of Phytopathology, vol. 18, pp. 259–288, 1980. View at Google Scholar
  177. D. B. Collinge, “Cell wall appositions: the first line of defence,” Journal of Experimental Botany, vol. 60, no. 2, pp. 351–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. T. Mateille, “Biology of the plant nematode relationship—physiological changes and the defence mechanism of plants,” Nematologica, vol. 40, no. 2, pp. 276–311, 1994. View at Google Scholar · View at Scopus
  179. A. Bhattacharya, P. Sood, and V. Citovsky, “The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection,” Molecular Plant Pathology, vol. 11, no. 5, pp. 705–719, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. C. J. Baker and E. W. Orlandi, “Active oxygen in plant pathogenesis,” Annual Review of Phytopathology, vol. 33, pp. 299–321, 1995. View at Google Scholar · View at Scopus
  181. R. Angelini, A. Tisi, G. Rea et al., “Involvement of polyamine oxidase in wound healing,” Plant Physiology, vol. 146, no. 1, pp. 162–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. D. Cipollini, Q. Wang, J. G. A. Whitehill, J. R. Powell, P. Bonello, and D. A. Herms, “Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer,” Journal of Chemical Ecology, vol. 37, no. 5, pp. 450–459, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. A. C. Schrotenboer, M. S. Allen, and C. M. Malmstrom, “Modification of native grasses for biofuel production may increase virus susceptibility,” Global Change Biology Bioenergy, vol. 3, pp. 360–374, 2011. View at Google Scholar
  184. D. L. Funnell-Harris, J. F. Pedersen, and S. E. Sattler, “Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum,” Phytopathology, vol. 100, no. 7, pp. 671–681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. D. M. Gibson, B. C. King, M. L. Hayes, and G. C. Bergstrom, “Plant pathogens as a source of diverse enzymes for lignocellulose digestion,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 264–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  186. X. Geng and K. Li, “Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus,” Applied Microbiology and Biotechnology, vol. 60, no. 3, pp. 342–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  187. C. Eggert, U. Temp, and K. E. L. Eriksson, “Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus,” FEBS Letters, vol. 407, no. 1, pp. 89–92, 1997. View at Publisher · View at Google Scholar · View at Scopus
  188. D. Singh and S. Chen, “The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes,” Applied Microbiology and Biotechnology, vol. 81, no. 3, pp. 399–417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  189. M. J. Dinis, R. M. F. Bezerra, F. Nunes et al., “Modification of wheat straw lignin by solid state fermentation with white-rot fungi,” Bioresource Technology, vol. 100, no. 20, pp. 4829–4835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  190. I. Isroi, R. Millati, S. Syamsiah et al., “Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review,” BioResources, vol. 6, no. 4, pp. 5224–5259, 2011. View at Google Scholar · View at Scopus
  191. P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production,” Industrial & Engineering Chemistry Research, vol. 48, no. 8, pp. 3713–3729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. S. M. Geib, T. R. Filley, P. G. Hatcher et al., “Lignin degradation in wood-feeding insects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 12932–12937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. D. O. Krause, S. E. Denman, R. I. Mackie et al., “Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics,” FEMS Microbiology Reviews, vol. 27, no. 5, pp. 663–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. G. A. Varga and E. S. Kolver, “Microbial and animal limitations to fiber digestion and utilization,” Journal of Nutrition, vol. 127, supplement 5, pp. S819–S823, 1997. View at Google Scholar · View at Scopus
  195. E. Novaes, M. Kirst, V. Chiang, H. Winter-Sederoff, and R. Sederoff, “Lignin and biomass: a negative correlation for wood formation and lignin content in trees,” Plant Physiology, vol. 154, no. 2, pp. 555–561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  196. M. Herrero, C. B. do Valle, N. R. G. Hughes, V. O. de Sabatel, and N. S. Jessop, “Measurements of physical strength and their relationship to the chemical composition of four species of Brachiaria,” Animal Feed Science and Technology, vol. 92, no. 3-4, pp. 149–158, 2001. View at Publisher · View at Google Scholar · View at Scopus
  197. A. Cannas, P. J. Van Soest, and A. N. Pell, “Use of animal and dietary information to predict rumen turnover,” Animal Feed Science and Technology, vol. 106, no. 1–4, pp. 95–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  198. G. Getachew, M. Blümmel, H. P. S. Makkar, and K. Becker, “In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review,” Animal Feed Science and Technology, vol. 72, no. 3-4, pp. 261–281, 1998. View at Google Scholar · View at Scopus
  199. M. D. Casler and H. J. G. Jung, “Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses,” Animal Feed Science and Technology, vol. 125, no. 1-2, pp. 151–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. V. Mechin, O. Argillier, V. Menanteau et al., “Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems,” Journal of the Science of Food and Agriculture, vol. 80, pp. 574–580, 2000. View at Google Scholar
  201. C. Riboulet, B. Lefèvre, D. Dénoue, and Y. Barrière, “Genetic variation in maize cell wall for lignin content, lignin structure, p-hydroxycinnamic acid content, and digestibility in set of 19 lines at silage harvest maturity,” Maydica, vol. 53, no. 1, pp. 11–19, 2008. View at Google Scholar · View at Scopus
  202. D. I. Gomes, E. Detmann, S. D. C. Valadares Filho et al., “Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber,” Animal Feed Science and Technology, vol. 168, no. 3-4, pp. 206–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. H. J. G. Jung and J. F. S. Lamb, “Identification of lucerne stem cell wall traits related to in vitro neutral detergent fibre digestibility,” Animal Feed Science and Technology, vol. 110, no. 1–4, pp. 17–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  204. J. H. Grabber, D. R. Mertens, H. Kim, C. Funk, F. Lu, and J. Ralph, “Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition,” Journal of the Science of Food and Agriculture, vol. 89, no. 1, pp. 122–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. J. L. de Boever, B. G. Cottyn, D. L. de Brabander, J. M. Vanacker, and C. V. Boucqué, “Prediction of the feeding value of grass silages by chemical parameters, in vitro digestibility and near-infrared reflectance spectroscopy,” Animal Feed Science and Technology, vol. 60, no. 1-2, pp. 103–115, 1996. View at Google Scholar · View at Scopus
  206. H. G. Jung, D. R. Mertens, and A. J. Payne, “Correlation of acid detergent lignin and klason lignin with digestibility of forage dry matter and neutral detergent fiber,” Journal of Dairy Science, vol. 80, no. 8, pp. 1622–1628, 1997. View at Google Scholar · View at Scopus
  207. M. J. Traxler, D. G. Fox, P. J. van Soest et al., “Predicting forage indigestible NDF from lignin concentration,” Journal of Animal Science, vol. 76, no. 5, pp. 1469–1480, 1998. View at Google Scholar · View at Scopus
  208. I. Karakurt, G. Aydin, and K. Aydiner, “Sources and mitigation of methane emissions by sectors: a critical review,” Renewable Energy, vol. 39, no. 1, pp. 40–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  209. R. Bodas, N. Prieto, R. Garcia-Gonzalez, S. Andres, F. J. Giraldez, and S. Lopez, “Manipulation of rumen fermentation and methane production with plant secondary metabolites,” Animal Feed Science and Technology, vol. 176, pp. 78–93, 2012. View at Google Scholar
  210. Y. Wang, T. Marx, J. Lora, L. E. Phillip, and T. A. McAllister, “Effects of purified lignin on in vitro ruminal fermentation and growth performance, carcass traits and fecal shedding of Escherichia coli by feedlot lambs,” Animal Feed Science and Technology, vol. 151, no. 1-2, pp. 21–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  211. I. K. Hindrichsen, H. R. Wettstein, A. Machmüller et al., “Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro,” Canadian Journal of Animal Science, vol. 84, no. 2, pp. 265–276, 2004. View at Google Scholar · View at Scopus
  212. S. Singh, B. P. Kushwaha, S. K. Nag et al., “In vitro methane emission from Indian dry roughages in relation to chemical composition,” Current Science, vol. 101, no. 1, pp. 57–65, 2011. View at Google Scholar · View at Scopus
  213. A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresource Technology, vol. 100, no. 1, pp. 10–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. T. D. H. Bugg, M. Ahmad, E. M. Hardiman, and R. Rahmanpour, “Pathways for degradation of lignin in bacteria and fungi,” Natural Product Reports, vol. 28, no. 12, pp. 1883–1896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  215. T. van Dinh, J. W. Cone, J. J. P. Baars, A. S. M. Sonnenberg, and W. H. Hendriks, “Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation,” Bioresource Technology, vol. 111, pp. 336–342, 2012. View at Publisher · View at Google Scholar · View at Scopus
  216. B. Shrivastava, S. Thakur, Y. P. Khasa, A. Gupte, A. K. Puniya, and R. C. Kuhad, “White-rot fungal conversion of wheat straw to energy rich cattle feed,” Biodegradation, vol. 22, no. 4, pp. 823–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  217. M. A. M. Rodrigues, P. Pinto, R. M. F. Bezerra et al., “Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw,” Animal Feed Science and Technology, vol. 141, no. 3-4, pp. 326–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  218. C. Sarnklong, J. W. Coneja, W. Pellikaan, and W. H. Hendriks, “Utilization of rice straw and different treatments to improve its feed value for ruminants: a review,” Asian-Australasian Journal of Animal Sciences, vol. 23, no. 5, pp. 680–692, 2010. View at Google Scholar · View at Scopus
  219. M. M. Rahman, M. Lourenço, H. A. Hassim et al., “Improving ruminal degradability of oil palm fronds using white rot fungi,” Animal Feed Science and Technology, vol. 169, no. 3-4, pp. 157–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  220. D. E. Akin, A. Sethuraman, W. H. Morrison III, S. A. Martin, and K. E. L. Eriksson, “Microbial delignification with white rot fungi improves forage digestibility,” Applied and Environmental Microbiology, vol. 59, no. 12, pp. 4274–4282, 1993. View at Google Scholar · View at Scopus
  221. K. Okano, N. Ohkoshi, A. Nishiyama, T. Usagawa, and M. Kitagawa, “Improving the nutritive value of madake bamboo, Phyllostachys bambusoides, for ruminants by culturing with the white-rot fungus Ceriporiopsis subvermispora,” Animal Feed Science and Technology, vol. 152, no. 3-4, pp. 278–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  222. J. X. Liu, E. R. Orskov, and X. B. Chen, “Optimization of steam treatment as a method for upgrading rice straw as feeds,” Animal Feed Science and Technology, vol. 76, no. 3-4, pp. 345–357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  223. V. J. H. Sewalt, K. A. Beauchemin, L. M. Rode, S. Acharya, and V. S. Baron, “Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification,” Bioresource Technology, vol. 61, no. 3, pp. 199–206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  224. Y. Barrière, C. Guillet, D. Goffner, and M. Pichon, “Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review,” Animal Research, vol. 52, no. 3, pp. 193–228, 2003. View at Google Scholar · View at Scopus
  225. E. M. G. Thorstensson, D. R. Buxton, and J. H. Cherney, “Apparent inhibition to digestion by lignin in normal and brown midrib stems,” Journal of the Science of Food and Agriculture, vol. 59, pp. 183–188, 1992. View at Google Scholar
  226. M. Goto, J. Matsuoka, T. Sato, H. Ehara, and O. Morita, “Brown midrib mutant maize with reduced levels of phenolic acids ether-linked to the cell walls,” Animal Feed Science and Technology, vol. 48, no. 1-2, pp. 27–38, 1994. View at Google Scholar · View at Scopus
  227. D. N. Ledgerwood, E. J. DePeters, P. H. Robinson, S. J. Taylor, and J. M. Heguy, “Assessment of a brown midrib (BMR) mutant gene on the nutritive value of sudangrass using in vitro and in vivo techniques,” Animal Feed Science and Technology, vol. 150, no. 3-4, pp. 207–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  228. S. Singh, S. V. S. Prasad, and D. S. Katiyar, “Genetic variability in the fodder yield, chemical composition and disappearance of nutrients in brown midrib and white midrib sorghum genotypes,” Asian-Australasian Journal of Animal Sciences, vol. 16, no. 9, pp. 1303–1308, 2003. View at Google Scholar · View at Scopus
  229. M. Baucher, M. A. Bernard-Vailhé, B. Chabbert et al., “Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility,” Plant Molecular Biology, vol. 39, no. 3, pp. 437–447, 1999. View at Publisher · View at Google Scholar · View at Scopus
  230. G. Getachew, A. M. Ibáñez, W. Pittroff et al., “A comparative study between lignin down regulated alfalfa lines and their respective unmodified controls on the nutritional characteristics of hay,” Animal Feed Science and Technology, vol. 170, no. 3-4, pp. 192–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  231. X. He, M. B. Hall, M. Gallo-Meagher, and R. L. Smith, “Improvement of forage quality by downregulation of maize O-methyltransferase,” Crop Science, vol. 43, no. 6, pp. 2240–2251, 2003. View at Google Scholar · View at Scopus
  232. H. J. G. Jung, W. T. Ni, C. C. S. Chapple, and K. Meyer, “Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant,” Journal of the Science of Food and Agriculture, vol. 79, pp. 922–928, 1999. View at Google Scholar
  233. T. Sang, “Toward the domestication of lignocellulosic energy crops: learning from food crop domestication,” Journal of Integrative Plant Biology, vol. 53, no. 2, pp. 96–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  234. J. S. Yuan, K. H. Tiller, H. Al-Ahmad, N. R. Stewart, and C. N. Stewart Jr., “Plants to power: bioenergy to fuel the future,” Trends in Plant Science, vol. 13, no. 8, pp. 421–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  235. E. M. Hodgson, S. J. Lister, A. V. Bridgwater, J. Clifton-Brown, and I. S. Donnison, “Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock,” Biomass & Bioenergy, vol. 34, no. 5, pp. 652–660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  236. L. Petrus and M. A. Noordermeer, “Biomass to biofuels, a chemical perspective,” Green Chemistry, vol. 8, no. 10, pp. 861–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  237. J. M. Triolo, L. Pedersen, H. Qu, and S. G. Sommer, “Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production,” Bioresource Technology, vol. 125, pp. 226–232, 2012. View at Google Scholar
  238. R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, “A review on biomass as a fuel for boilers,” Renewable & Sustainable Energy Reviews, vol. 15, no. 5, pp. 2262–2289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  239. C. Gary, J. S. Frossard, and D. Chenevard, “Heat of combustion, degree of reduction and carbon content. 3. Interrelated methods of estimating the construction cost of plant-tissues,” Agronomie, vol. 15, no. 1, pp. 59–69, 1995. View at Google Scholar · View at Scopus
  240. V. Mendu, T. Shearin, J. E. Campbell Jr. et al., “Global bioenergy potential from high-lignin agricultural residue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 10, pp. 4014–4019, 2012. View at Publisher · View at Google Scholar · View at Scopus
  241. W. J. Orts, K. M. Holtman, and J. N. Seiber, “Agricultural chemistry and bioenergy,” Journal of Agricultural and Food Chemistry, vol. 56, no. 11, pp. 3892–3899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  242. Y. Lu, X.-Y. Wei, J.-P. Cao et al., “Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin,” Bioresource Technology, vol. 116, pp. 114–119, 2012. View at Google Scholar
  243. F. Melligan, K. Dussan, R. Auccaise et al., “Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus,” Bioresource Technology, vol. 108, pp. 258–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  244. P. Rutkowski, “Pyrolysis of cellulose, xylan and lignin with the K2CO3 and ZnCl2 addition for bio-oil production,” Fuel Processing Technology, vol. 92, no. 3, pp. 517–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  245. A. A. Boateng, P. J. Weimer, H. G. Jung, and J. F. S. Lamb, “Response of thermochemical and biochemical conversion processes to lignin concentration in alfalfa stems,” Energy and Fuels, vol. 22, no. 4, pp. 2810–2815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  246. R. Fahmi, A. V. Bridgwater, I. Donnison, N. Yates, and J. M. Jones, “The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability,” Fuel, vol. 87, no. 7, pp. 1230–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  247. E. M. Hodgson, D. J. Nowakowski, I. Shield et al., “Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals,” Bioresource Technology, vol. 102, no. 3, pp. 3411–3418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  248. Y. Zeng, X. Yang, H. Yu, X. Zhang, and F. Ma, “Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi,” Journal of Agricultural and Food Chemistry, vol. 59, no. 18, pp. 9965–9971, 2011. View at Publisher · View at Google Scholar · View at Scopus
  249. E. G. Pereira, J. N. da Silva, J. L. de Oliveira, and C. S. Machado, “Sustainable energy: a review of gasification technologies,” Renewable & Sustainable Energy Reviews, vol. 16, pp. 4753–4762, 2012. View at Google Scholar
  250. V. Subramani and S. K. Gangwal, “A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol,” Energy and Fuels, vol. 22, no. 2, pp. 814–839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  251. H. P. Yang, R. Yan, H. P. Chen, D. H. Lee, and C. G. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12-13, pp. 1781–1788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  252. A. G. Barneto, J. A. Carmona, A. Gálvez, and J. A. Conesa, “Effects of the composting and the heating rate on biomass gasification,” Energy and Fuels, vol. 23, no. 2, pp. 951–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  253. A. G. Barneto, J. A. Carmona, J. A. C. Ferrer, and M. J. D. Blanco, “Kinetic study on the thermal degradation of a biomass and its compost: composting effect on hydrogen production,” Fuel, vol. 89, no. 2, pp. 462–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  254. N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, “Bioethanol production from agricultural wastes: an overview,” Renewable Energy, vol. 37, no. 1, pp. 19–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  255. J. Lindedam, S. B. Andersen, J. DeMartini et al., “Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw,” Biomass & Bioenergy, vol. 37, pp. 221–228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  256. A. V. Lygin, J. Upton, F. G. Dohleman et al., “Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop—Miscanthus,” Global Change Biology Bioenergy, vol. 3, pp. 333–345, 2011. View at Google Scholar
  257. A. J. Lorenz, R. P. Anex, A. Isci, J. G. Coors, N. de Leon, and P. J. Weimer, “Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover,” Biotechnology for Biofuels, vol. 2, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  258. W. F. Anderson, B. S. Dien, H.-J. G. Jung, K. P. Vogel, and P. J. Weimer, “Effects of forage quality and cell wall constituents of Bermuda grass on biochemical conversion to ethanol,” Bioenergy Research, vol. 3, no. 3, pp. 225–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  259. F. Chen and R. A. Dixon, “Lignin modification improves fermentable sugar yields for biofuel production,” Nature Biotechnology, vol. 25, no. 7, pp. 759–761, 2007. View at Publisher · View at Google Scholar · View at Scopus
  260. C. Fu, J. R. Mielenz, X. Xiao et al., “Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3803–3808, 2011. View at Publisher · View at Google Scholar · View at Scopus
  261. J. M. Kusiima and S. E. Powers, “Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks,” Energy Policy, vol. 38, no. 6, pp. 2785–2796, 2010. View at Publisher · View at Google Scholar · View at Scopus
  262. K. Minu, K. K. Jiby, and V. V. N. Kishore, “Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw,” Biomass & Bioenergy, vol. 39, pp. 210–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  263. F. Monlau, C. Sambusiti, A. Barakat et al., “Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials,” Environmental Science & Technology, vol. 46, pp. 12217–12225, 2012. View at Google Scholar
  264. E. A. Tsavkelova and A. I. Netrusov, “Biogas production from cellulose-containing substrates: a review,” Applied Biochemistry and Microbiology, vol. 48, pp. 421–433, 2012. View at Google Scholar
  265. E. Klimiuk, T. Pokój, W. Budzyński, and B. Dubis, “Theoretical and observed biogas production from plant biomass of different fibre contents,” Bioresource Technology, vol. 101, no. 24, pp. 9527–9535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  266. C. Grieder, B. S. Dhillon, W. Schipprack, and A. E. Melchinger, “Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance,” Theoretical and Applied Genetics, vol. 124, pp. 981–988, 2012. View at Publisher · View at Google Scholar · View at Scopus
  267. J. M. Triolo, S. G. Sommer, H. B. Møller, M. R. Weisbjerg, and X. Y. Jiang, “A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential,” Bioresource Technology, vol. 102, no. 20, pp. 9395–9402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  268. D. P. Komilis and R. K. Ham, “The effect of lignin and sugars to the aerobic decomposition of solid wastes,” Waste Management, vol. 23, no. 5, pp. 419–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  269. P. Buffiere, D. Loisel, N. Bernet, and J. P. Delgenes, “Towards new indicators for the prediction of solid waste anaerobic digestion properties,” Water Science and Technology, vol. 53, no. 8, pp. 233–241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  270. M. J. Taherzadeh and K. Karimi, “Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review,” International Journal of Molecular Sciences, vol. 9, no. 9, pp. 1621–1651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  271. M. Carlsson, A. Lagerkvist, and F. Morgan-Sagastume, “The effects of substrate pre-treatment on anaerobic digestion systems: a review,” Waste Management, vol. 32, pp. 1634–1650, 2012. View at Google Scholar
  272. T. Mackulak, J. Prousek, L. Svorc, and M. Drtil, “Increase of biogas production from pretreated hay and leaves using wood-rotting fungi,” Chemical Papers, vol. 66, pp. 649–653, 2012. View at Google Scholar
  273. K. Ziemiński, I. Romanowska, and M. Kowalska, “Enzymatic pretreatment of lignocellulosic wastes to improve biogas production,” Waste Management, vol. 32, no. 6, pp. 1131–1137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  274. Z. Song, G. Yang, Y. Guo, and T. Zhang, “Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion,” BioResources, vol. 7, pp. 3223–3236, 2012. View at Google Scholar
  275. F. Monlau, A. Barakat, J. P. Steyer, and H. Carrere, “Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks,” Bioresource Technology, vol. 120, pp. 241–247, 2012. View at Google Scholar
  276. R. Vanholme, K. Morreel, C. Darrah et al., “Metabolic engineering of novel lignin in biomass crops,” New Phytologist, vol. 196, pp. 978–1000, 2012. View at Google Scholar
  277. J.-K. Weng, X. Li, N. D. Bonawitz, and C. Chapple, “Emerging strategies of lignin engineering and degradation for cellulosic biofuel production,” Current Opinion in Biotechnology, vol. 19, no. 2, pp. 166–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  278. M. Tuomela, M. Vikman, A. Hatakka, and M. Itävaara, “Biodegradation of lignin in a compost environment: a review,” Bioresource Technology, vol. 72, no. 2, pp. 169–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  279. W. Zech, N. Senesi, G. Guggenberger et al., “Factors controlling humification and mineralization of soil organic matter in the tropics,” Geoderma, vol. 79, no. 1–4, pp. 117–161, 1997. View at Publisher · View at Google Scholar · View at Scopus
  280. B. Marschner, S. Brodowski, A. Dreves et al., “How relevant is recalcitrance for the stabilization of organic matter in soils?” Journal of Plant Nutrition and Soil Science, vol. 171, no. 1, pp. 91–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  281. W. Amelung, K. W. Flach, and W. Zech, “Climatic effects on soil organic matter composition in the Great Plains,” Soil Science Society of America Journal, vol. 61, no. 1, pp. 115–123, 1997. View at Google Scholar · View at Scopus
  282. R. Kiem and I. Kögel-Knabner, “Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils,” Soil Biology & Biochemistry, vol. 35, no. 1, pp. 101–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  283. G. Gleixner, N. Poirier, R. Bol, and J. Balesdent, “Molecular dynamics of organic matter in a cultivated soil,” Organic Geochemistry, vol. 33, no. 3, pp. 357–366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  284. E. M. Carrington, P. J. Hernes, R. Y. Dyda, A. F. Plante, and J. Six, “Biochemical changes across a carbon saturation gradient: lignin, cutin, and suberin decomposition and stabilization in fractionated carbon pools,” Soil Biology & Biochemistry, vol. 47, pp. 179–190, 2012. View at Publisher · View at Google Scholar · View at Scopus
  285. W. Amelung, K.-W. Flach, and W. Zech, “Lignin in particle-size fractions of native grassland soils as influenced by climate,” Soil Science Society of America Journal, vol. 63, no. 5, pp. 1222–1228, 1999. View at Google Scholar · View at Scopus
  286. M. Thevenot, M.-F. Dignac, and C. Rumpel, “Fate of lignins in soils: a review,” Soil Biology & Biochemistry, vol. 42, no. 8, pp. 1200–1211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  287. T. Osono, “Ecology of ligninolytic fungi associated with leaf litter decomposition,” Ecological Research, vol. 22, no. 6, pp. 955–974, 2007. View at Publisher · View at Google Scholar · View at Scopus
  288. R. L. Sinsabaugh, “Phenol oxidase, peroxidase and organic matter dynamics of soil,” Soil Biology & Biochemistry, vol. 42, no. 3, pp. 391–404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  289. A. T. Austin and C. L. Ballaré, “Dual role of lignin in plant litter decomposition in terrestrial ecosystems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 10, pp. 4618–4622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  290. M. J. Simpson and A. J. Simpson, “The chemical ecology of soil organic matter molecular constituents,” Journal of Chemical Ecology, vol. 38, no. 6, pp. 768–784, 2012. View at Publisher · View at Google Scholar · View at Scopus
  291. E. C. Adair, W. J. Parton, S. J. del Grosso et al., “Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates,” Global Change Biology, vol. 14, no. 11, pp. 2636–2660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  292. B. R. Taylor, D. Parkinson, and W. F. J. Parsons, “Nitrogen and lignin content as predictors of litter decay rates—a microcosm test,” Ecology, vol. 70, no. 1, pp. 97–104, 1989. View at Google Scholar · View at Scopus
  293. M. Becker, J. K. Ladha, and J. C. G. Ottow, “Nitrogen losses and lowland rice yield as affected by residue nitrogen release,” Soil Science Society of America Journal, vol. 58, no. 6, pp. 1660–1665, 1994. View at Google Scholar · View at Scopus
  294. M. Becker, J. K. Ladha, I. C. Simpson, and J. C. G. Ottow, “Parameters affecting residue nitrogen mineralization in flooded soils,” Soil Science Society of America Journal, vol. 58, no. 6, pp. 1666–1671, 1994. View at Google Scholar · View at Scopus
  295. J. G. Cobo, E. Barrios, D. C. L. Kass, and R. J. Thomas, “Decomposition and nutrient release by green manures in a tropical hillside agroecosystem,” Plant and Soil, vol. 240, no. 2, pp. 331–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  296. J. H. C. Cornelissen, H. M. Quested, D. Gwynn-Jones et al., “Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types,” Functional Ecology, vol. 18, no. 6, pp. 779–786, 2004. View at Publisher · View at Google Scholar · View at Scopus
  297. C. A. Palm and P. A. Sanchez, “Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents,” Soil Biology & Biochemistry, vol. 23, no. 1, pp. 83–88, 1991. View at Google Scholar · View at Scopus
  298. K. Kalbitz, K. Kaiser, J. Bargholz, and P. Dardenne, “Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter,” European Journal of Soil Science, vol. 57, no. 4, pp. 504–516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  299. G. E. Machinet, I. Bertrand, Y. Barrière, B. Chabbert, and S. Recous, “Impact of plant cell wall network on biodegradation in soil: role of lignin composition and phenolic acids in roots from 16 maize genotypes,” Soil Biology & Biochemistry, vol. 43, no. 7, pp. 1544–1552, 2011. View at Publisher · View at Google Scholar · View at Scopus
  300. F. Liebner, G. P. Four, J. M. de la Rosa Arranz, A. Hilseher, T. Rosenau, and H. Knicker, “Ammonoxidised lignins as slow nitrogen-releasing soil amendments and CO2-binding matrix,” Angewandte Chemie, vol. 50, no. 37, pp. A34–A39, 2011. View at Google Scholar · View at Scopus
  301. N. H. Batjes, “Total carbon and nitrogen in the soils of the world,” European Journal of Soil Science, vol. 47, no. 2, pp. 151–163, 1996. View at Google Scholar · View at Scopus
  302. H. Blanco-Canqui and R. Lal, “Mechanisms of carbon sequestration in soil aggregates,” Critical Reviews in Plant Sciences, vol. 23, no. 6, pp. 481–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  303. F. A. Dijkstra, S. E. Hobbie, J. M. H. Knops, and P. B. Reich, “Nitrogen deposition and plant species interact to influence soil carbon stabilization,” Ecology Letters, vol. 7, no. 12, pp. 1192–1198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  304. B. Mandal, B. Majumder, T. K. Adhya et al., “Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate,” Global Change Biology, vol. 14, no. 9, pp. 2139–2151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  305. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature, vol. 440, no. 7081, pp. 165–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  306. X. Feng, A. J. Simpson, K. P. Wilson, D. D. Williams, and M. J. Simpson, “Increased cuticular carbon sequestration and lignin oxidation in response to soil warming,” Nature Geoscience, vol. 1, no. 12, pp. 836–839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  307. Y. Barriere and O. Argillier, “Brown-midrib genes of maize—a review,” Agronomie, vol. 13, no. 10, pp. 865–876, 1993. View at Google Scholar · View at Scopus
  308. F. Vignols, J. Rigau, M. A. Torres, M. Capellades, and P. Puigdomenech, “The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase,” Plant Cell, vol. 7, no. 4, pp. 407–416, 1995. View at Publisher · View at Google Scholar · View at Scopus
  309. Y. Chen, H. Liu, F. Ali et al., “Genetic and physical fine mapping of the novel brown midrib gene bm6 in maize (Zea mays L.) to a 180 kb region on chromosome 2,” Theoretical and Applied Genetics, vol. 125, pp. 1223–1235, 2012. View at Google Scholar
  310. K. E. Tjardes, D. D. Buskirk, M. S. Allen, N. K. Ames, L. D. Bourquin, and S. R. Rust, “Brown midrib-3 corn silage improves digestion but not performance of growing beef steers,” Journal of Animal Science, vol. 78, no. 11, pp. 2957–2965, 2000. View at Google Scholar · View at Scopus
  311. A. L. Oliver, R. J. Grant, J. F. Pedersen, and J. O'Rear, “Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows,” Journal of Dairy Science, vol. 87, no. 3, pp. 637–644, 2004. View at Google Scholar · View at Scopus
  312. B. S. Dien, G. Sarath, J. F. Pedersen et al., “Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents,” Bioenergy Research, vol. 2, no. 3, pp. 153–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  313. A. J. Lorenz, J. G. Coors, N. de Leon et al., “Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol,” Crop Science, vol. 49, no. 1, pp. 85–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  314. A. Saballos, W. Vermerris, L. Rivera, and G. Ejeta, “Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench),” Bioenergy Research, vol. 1, pp. 193–204, 2008. View at Google Scholar
  315. P. M. White, C. W. Rice, J. A. Baldock, and M. R. Tuinstra, “Soil biological properties following additions of bmr mutant grain sorghum,” Soil Biology & Biochemistry, vol. 39, no. 7, pp. 1518–1532, 2007. View at Publisher · View at Google Scholar · View at Scopus
  316. Y. Barrière, V. Méchin, F. Lafarguette et al., “Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production,” Maydica, vol. 54, no. 2-3, pp. 161–198, 2009. View at Google Scholar · View at Scopus
  317. Z. Dimov, E. Suprianto, F. Hermann, and C. Möllers, “Genetic variation for seed hull and fibre content in a collection of European winter oilseed rape material (Brassica napus L.) and development of NIRS calibrations,” Plant Breeding, vol. 131, pp. 361–368, 2012. View at Publisher · View at Google Scholar · View at Scopus
  318. C. Shi, A. Uzarowska, M. Ouzunova, M. Landbeck, G. Wenzel, and T. Lübberstedt, “Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population,” BMC Genomics, vol. 8, article 22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  319. P. L. Morrell, E. S. Buckler, and J. Ross-Ibarra, “Crop genomics: advances and applications,” Nature Reviews Genetics, vol. 13, no. 2, pp. 85–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  320. C. Riedelsheimer, J. Lisec, A. Czedik-Eysenberg et al., “Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 8872–8877, 2012. View at Google Scholar
  321. H. Hisano, R. Nandakumar, and Z.-Y. Wang, “Genetic modification of lignin biosynthesis for improved biofuel production,” In Vitro Cellular & Developmental Biology, vol. 45, no. 3, pp. 306–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  322. S. Fornale, M. Capellades, A. Encina et al., “Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase,” Molecular Plant, vol. 5, pp. 817–830, 2012. View at Google Scholar
  323. J. Piquemal, S. Chamayou, I. Nadaud et al., “Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach,” Plant Physiology, vol. 130, no. 4, pp. 1675–1685, 2002. View at Publisher · View at Google Scholar · View at Scopus
  324. D. G. Guo, F. Chen, J. Wheeler et al., “Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases,” Transgenic Research, vol. 10, no. 5, pp. 457–464, 2001. View at Publisher · View at Google Scholar · View at Scopus
  325. J. H. Jung, W. M. Fouad, W. Vermerris, M. Gallo, and F. Altpeter, “RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass,” Plant Biotechnology Journal, vol. 10, pp. 1067–1076, 2012. View at Google Scholar
  326. M. S. S. Reddy, F. Chen, G. Shadle, L. Jackson, H. Aljoe, and R. A. Dixon, “Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.),” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 46, pp. 16573–16578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  327. F. Fornal, X. Shi, C. Chai et al., “ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux,” Plant Journal, vol. 64, no. 4, pp. 633–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  328. S. Rastogi and U. N. Dwivedi, “Manipulation of lignin in plants with special reference to O-methyltransferase,” Plant Science, vol. 174, no. 3, pp. 264–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  329. C. E. L. Fonseca, D. R. Viands, J. L. Hansen, and A. N. Pell, “Associations among forage quality traits, vigor, and disease resistance in alfalfa,” Crop Science, vol. 39, no. 5, pp. 1271–1276, 1999. View at Google Scholar · View at Scopus
  330. Y. Chen, I. Zein, E. A. Brenner et al., “Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.),” BMC Plant Biology, vol. 10, article 12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  331. J. H. Grabber, D. Ress, and J. Ralph, “identifying new lignin bioengineering targets: impact of epicatechin, quercetin glycoside, and gallate derivatives on the lignification and fermentation of maize cell walls,” Journal of Agricultural and Food Chemistry, vol. 60, pp. 5152–5160, 2012. View at Google Scholar
  332. J. H. Grabber, P. F. Schatz, H. Kim, F. Lu, and J. Ralph, “Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability,” BMC Plant Biology, vol. 10, article 114, 2010. View at Publisher · View at Google Scholar · View at Scopus