Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 480231, 10 pages
http://dx.doi.org/10.1155/2013/480231
Research Article

In Astrocytes the Accumulation of the Immunity-Related GTPases Irga6 and Irgb6 at the Vacuole of Toxoplasma gondii Is Dependent on the Parasite Virulence

1Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
2Department of Neurology, Heinrich-Heine University, Moorenstrasse 5, 40225 Duesseldorf, Germany

Received 6 August 2013; Accepted 18 September 2013

Academic Editors: S. Angel and F. Monroy

Copyright © 2013 Felix P. Lubitz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. K. Howe and L. D. Sibley, “Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease,” Journal of Infectious Diseases, vol. 172, no. 6, pp. 1561–1566, 1995. View at Google Scholar · View at Scopus
  2. D. L. Sibley, D. Mordue, and D. K. Howe, “Experimental approaches to understanding virulence in taxoplasmosis,” Immunobiology, vol. 201, no. 2, pp. 210–224, 1999. View at Google Scholar · View at Scopus
  3. R. T. Gazzinelli, E. Y. Denkers, and A. Sher, “Host resistance to Toxoplasma gondii: model for studying the selective induction of cell-mediated immunity by intracellular parasites,” Infectious Agents and Disease, vol. 2, no. 3, pp. 139–149, 1993. View at Google Scholar · View at Scopus
  4. S. K. Halonen, W. D. Lyman, and F. C. Chiu, “Growth and development of Toxoplasma gondii in human neurons and astrocytes,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 11, pp. 1150–1156, 1996. View at Google Scholar · View at Scopus
  5. W. J. Sullivan Jr. and V. Jeffers, “Mechanisms of Toxoplasma gondii persistence and latency,” FEMS Microbiology Reviews, vol. 36, no. 3, pp. 717–733, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. P. Ferguson, W. M. Hutchison, and E. Pettersen, “Tissue cyst rupture in mice chronically infected with Toxoplasma gondii. An immunocytochemical and ultrastructural study,” Parasitology Research, vol. 75, no. 8, pp. 599–603, 1989. View at Google Scholar · View at Scopus
  7. T. M. Scharton-Kersten, T. A. Wynn, E. Y. Denkers et al., “In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection,” Journal of Immunology, vol. 157, no. 9, pp. 4045–4054, 1996. View at Google Scholar · View at Scopus
  8. G. S. Yap and A. Sher, “Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-γ- and tumor necrosis factor (TNF)-α- dependent host resistance to the intracellular pathogen, Toxoplasma gondii,” Journal of Experimental Medicine, vol. 189, no. 7, pp. 1083–1091, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. S. K. Halonen, F.-C. Chiu, and L. M. Weiss, “Effect of cytokines on growth of Toxoplasma gondii in murine astrocytes,” Infection and Immunity, vol. 66, no. 10, pp. 4989–4993, 1998. View at Google Scholar · View at Scopus
  10. G. A. Taylor, C. M. Collazo, G. S. Yap et al., “Pathogen-specific loss of host resistance in mice lacking the IFN-γ-inducible gene IGTP,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 2, pp. 751–755, 2000. View at Google Scholar · View at Scopus
  11. C. M. Collazo, G. S. Yap, G. D. Sempowski et al., “Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection,” Journal of Experimental Medicine, vol. 194, no. 2, pp. 181–187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Liesenfeld, I. Parvanova, J. Zerrahn et al., “The IFN-γ-inducible GTPase, irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens,” PLoS ONE, vol. 6, no. 6, Article ID e20568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Martens, I. Parvanova, J. Zerrahn et al., “Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases,” PLoS Pathogens, vol. 1, no. 3, article e24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. L. D. Sibley, “Intracellular parasite invasion strategies,” Science, vol. 304, no. 5668, pp. 248–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Carruthers and J. C. Boothroyd, “Pulling together: an integrated model of Toxoplasma cell invasion,” Current Opinion in Microbiology, vol. 10, no. 1, pp. 83–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. El Hajj, E. Demey, J. Poncet et al., “The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling,” Proteomics, vol. 6, no. 21, pp. 5773–5784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Taylor, A. Barragan, C. Su et al., “A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii,” Science, vol. 314, no. 5806, pp. 1776–1780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. P. J. Saeij, J. P. Boyle, S. Coller et al., “Polymorphic secreted kinases are key virulence factors in toxoplasmosis,” Science, vol. 314, no. 5806, pp. 1780–1783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Niedelman, D. A. Gold, E. E. Rosowski et al., “The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-γ response,” PLoS Pathogens, vol. 8, no. 1, Article ID e1002784, 2012. View at Publisher · View at Google Scholar
  20. M. S. Behnke, S. J. Fentress, M. Mashayekhi, L. X. Li, G. A. Taylor, and L. D. Sibley, “The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18,” PLoS Pathogens, vol. 8, no. 11, Article ID e1002992, 2012. View at Publisher · View at Google Scholar
  21. Y.-C. Ong, M. L. Reese, and J. C. Boothroyd, “Toxoplasma phoptry protein 16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6,” Journal of Biological Chemistry, vol. 285, no. 37, pp. 28731–28740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M.-J. Gubbels, C. Li, and B. Striepen, “High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 309–316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Winsser and J. D. Verlinde, “Isolation of Toxoplasma from cerebrospinal fluid of a living infant in Holland,” Proceedings of the Society for Experimental Biology and Medicine, vol. 67, no. 3, pp. 292–294, 1948. View at Publisher · View at Google Scholar
  24. S. F. Parmley, S. Yang, G. Harth, L. D. Sibley, A. Sucharczuk, and J. S. Remington, “Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed abundantly in the matrix of tissue cysts,” Molecular and Biochemical Parasitology, vol. 66, no. 2, pp. 283–296, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. S. F. Parmley, U. Gross, A. Sucharczuk, T. Windeck, G. D. Sgarlato, and J. S. Remington, “Two alleles of the gene encoding surface antigen P22 in 25 strains of Toxoplasma gondii,” Journal of Parasitology, vol. 80, no. 2, pp. 293–301, 1994. View at Google Scholar · View at Scopus
  26. U. Gross, H. Bormuth, C. Gaissmaier et al., “Monoclonal rat antibodies directed against Toxoplasma gondii suitable for studying tachyzoite-bradyzoite interconversion in vivo,” Clinical and Diagnostic Laboratory Immunology, vol. 2, no. 5, pp. 542–548, 1995. View at Google Scholar · View at Scopus
  27. M. Soete, B. Fortier, D. Camus, and J. F. Dubremetz, “Toxoplasma gondii: kinetics of bradyzoite-tachyzoite interconversion in vitro,” Experimental Parasitology, vol. 76, no. 3, pp. 259–264, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. E. R. Pfefferkorn and L. C. Pfefferkorn, “Specific labeling of intracellular Toxoplasma gondii with uracil,” Journal of Protozoology, vol. 24, no. 3, pp. 449–453, 1977. View at Google Scholar · View at Scopus
  29. E. H. Wilson and C. A. Hunter, “The role of astrocytes in the immunopathogenesis of toxoplasmic encephalitis,” International Journal for Parasitology, vol. 34, no. 5, pp. 543–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Hunter, C. W. Roberts, and J. Alexander, “Kinetics of cytokine mRNA production in the brains of mice with progressive toxoplasmic encephalitis,” European Journal of Immunology, vol. 22, no. 9, pp. 2317–2322, 1992. View at Google Scholar · View at Scopus
  31. U. Boehm, L. Guethlein, T. Klamp et al., “Two families of GTPases dominate the complex cellular response to IFN-γ,” Journal of Immunology, vol. 161, no. 12, pp. 6715–6723, 1998. View at Google Scholar · View at Scopus
  32. A. R. Shenoy, B.-H. Kim, H.-P. Choi, T. Matsuzawa, S. Tiwari, and J. D. MacMicking, “Emerging themes in IFN-γ-induced macrophage immunity by the p47 and p65 GTPase families,” Immunobiology, vol. 212, no. 9-10, pp. 771–784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Degrandi, C. Konermann, C. Beuter-Gunia et al., “Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense,” Journal of Immunology, vol. 179, no. 11, pp. 7729–7740, 2007. View at Google Scholar · View at Scopus
  34. A. Khaminets, J. P. Hunn, S. Könen-Waisman et al., “Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole,” Cellular Microbiology, vol. 12, no. 7, pp. 939–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. M. Ling, M. H. Shaw, C. Ayala et al., “Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages,” Journal of Experimental Medicine, vol. 203, no. 9, pp. 2063–2071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Melzer, A. Duffy, L. M. Weiss, and S. K. Halonen, “The gamma interferon (IFN-γ)-inducible GTP-binding protein IGTP is necessary for Toxoplasma vacuolar disruption and induces parasite egression in IFN-γ-stimulated astrocytes,” Infection and Immunity, vol. 76, no. 11, pp. 4883–4894, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. O. Zhao, A. Khaminets, J. P. Hunn, and J. C. Howard, “Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Zhao, D. J. P. Ferguson, D. C. Wilson, J. C. Howard, L. D. Sibley, and G. S. Yap, “Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages,” Journal of Immunology, vol. 182, no. 6, pp. 3775–3781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. A. Butcher, B. A. Fox, L. M. Rommereim et al., “Toxoplasma gondii rhoptry kinase rop16 activates stat3 and stat6 resulting in cytokine inhibition and arginase-1-dependent growth control,” PLoS Pathogens, vol. 7, no. 9, Article ID e1002236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. C. Fleckenstein, M. L. Reese, S. Konen-Waisman, J. C. Boothroyd, J. C. Howard, and T. Steinfeldt, “A Toxoplasma gondii pseudokinase inhibits host IRG resistance proteins,” PLoS Biology, vol. 10, no. 7, Article ID e1001358, 2012. View at Publisher · View at Google Scholar