Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 489659, 6 pages
http://dx.doi.org/10.1155/2013/489659
Research Article

Effects of Resveratrol on Methotrexate-Induced Testicular Damage in Rats

1Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
2Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
3Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey

Received 17 May 2013; Accepted 6 July 2013

Academic Editors: H. Grant and L. A. Videla

Copyright © 2013 Esin Yuluğ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kim, K. Kim, and M. Chung, “Testicular cytotoxicity of DA-125, a new anthracycline anticancer agent, in rats,” Reproductive Toxicology, vol. 13, no. 5, pp. 391–397, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. R. L. Schilsky, B. J. Lewis, R. J. Sherins, and R. C. Young, “Gonadal dysfunction in patients receiving chemotherapy for cancer,” Annals of Internal Medicine, vol. 93, no. 1, pp. 109–114, 1980. View at Google Scholar · View at Scopus
  3. H. S. Nouri, Y. Azarmi, and M. Movahedin, “Effect of growth hormone on testicular dysfunction induced by methotrexate in rats,” Andrologia, vol. 41, no. 2, pp. 105–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Padmanabhan, D. N. Tripathi, A. Vikram, P. Ramarao, and G. B. Jena, “Methotrexate-induced cytotoxicity and genotoxicity in germ cells of mice: intervention of folic and folinic acid,” Mutation Research, vol. 673, no. 1, pp. 43–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Vardi, H. Parlakpinar, B. Ates, A. Cetin, and A. Otlu, “Antiapoptotic and antioxidant effects of β-carotene against methotrexate-induced testicular injury,” Fertility and Sterility, vol. 92, no. 6, pp. 2028–2033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Armagan, E. Uzar, E. Uz et al., “Caffeic acid phenethyl ester modulates methotrexate-induced oxidative stress in testes of rat,” Human and Experimental Toxicology, vol. 27, no. 7, pp. 547–552, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Gulgun, O. Erdem, E. Oztas et al., “Proanthocyanidin prevents methotrexate-induced intestinal damage and oxidative stress,” Experimental and Toxicologic Pathology, vol. 62, no. 2, pp. 109–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Shin, J. H. Jeon, D. Park et al., “trans-resveratrol relaxes the corpus cavernosum ex vivo and enhances testosterone levels and sperm quality in vivo,” Archives of Pharmacal Research, vol. 31, no. 1, pp. 83–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. E. Juan, E. González-Pons, T. Munuera, J. Ballester, J. E. Rodríguez-Gil, and J. M. Planas, “trans-Resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats,” Journal of Nutrition, vol. 135, no. 4, pp. 757–760, 2005. View at Google Scholar · View at Scopus
  10. A. Revel, H. Raanani, E. Younglai et al., “Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects sperm from DNA damage and apoptosis caused by benzo(a)pyrene,” Reproductive Toxicology, vol. 15, no. 5, pp. 479–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Jiang, T. Peng, Y. Luo, M. Li, and Y. Lin, “Resveratrol reestablishes spermatogenesis after testicular injury in rats caused by 2,5-hexanedione,” Chinese Medical Journal, vol. 121, no. 13, pp. 1204–1209, 2008. View at Google Scholar · View at Scopus
  12. S. Leonard, C. Xia, B. H. Jiang et al., “Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses,” Biochemical and Biophysical Research Communications, vol. 309, no. 4, pp. 1017–1026, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Yagi, “Lipid peroxidesandrelated radicals in clinical medicine,” in Free Radicals in Diagnostic Medicine, D. Armstrong, Ed., pp. 1–15, Plenum Press, New York, NY, USA, 1994. View at Google Scholar
  14. M. Uchiyama and M. Mihara, “Determination of malonaldehyde precursor in tissues by thiobarbituric acid test,” Analytical Biochemistry, vol. 86, no. 1, pp. 271–278, 1978. View at Google Scholar · View at Scopus
  15. Y. Sun, L. W. Oberley, and Y. Li, “A simple method for clinical assay of superoxide dismutase,” Clinical Chemistry, vol. 34, no. 3, pp. 497–500, 1988. View at Google Scholar · View at Scopus
  16. H. Aebi, “Catalase,” in Methods of Enzymaticanalysis, H. U. Bergmeyer, Ed., pp. 673–677, Academic Press, New York, NY, USA, 1974. View at Google Scholar
  17. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  18. S. G. Johnsen, “Testicular biopsy score count0-a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males,” Hormones, vol. 1, no. 1, pp. 2–25, 1970. View at Google Scholar · View at Scopus
  19. E. Karagüzel, O. Kutlu, E. Yulug et al., “Comparison of the protective effect of dipyridamole and acetylsalicylic acid on long-term histologic damage in a rat model of testicular ischemia-reperfusion injury,” Journal of Pediatric Surgery, vol. 47, no. 9, pp. 1716–1723, 2012. View at Google Scholar
  20. G. Şener, E. Ekşioǧlu-Demiralp, M. Çetiner, F. Ercan, and B. Yeǧen, “β-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects,” European Journal of Pharmacology, vol. 542, no. 1–3, pp. 170–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. de Lamirande, H. Jiang, A. Zini, H. Kodama, and C. Gagnon, “Reactive oxygen species and sperm physiology,” Reviews of Reproduction, vol. 2, no. 1, pp. 48–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. S. C. Sikka, “Relative impact of oxidative stress on male reproductive function,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 851–862, 2001. View at Google Scholar · View at Scopus
  23. M. H. Moustafa, R. K. Sharma, J. Thornton et al., “Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility,” Human Reproduction, vol. 19, no. 1, pp. 129–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Miyazono, F. Gao, and T. Horie, “Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats,” Scandinavian Journal of Gastroenterology, vol. 39, no. 11, pp. 1119–1127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Kose, H. I. Sapmaz, E. Sarihan, N. Vardi, Y. Turkoz, and N. Ekinci, “Beneficial effects of montelukast against methotrexate-induced liver toxicity: a biochemical and histological study,” The ScientificWorldJournal, vol. 2012, 6 pages, 2012. View at Publisher · View at Google Scholar
  26. C. Prahalathan, E. Selvakumar, and P. Varalakshmi, “Remedial effect of DL-α-lipoic acid against adriamycin induced testicular lipid peroxidation,” Molecular and Cellular Biochemistry, vol. 267, no. 1-2, pp. 209–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Fujii, Y. Iuchi, S. Matsuki, and T. Ishii, “Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues,” Asian Journal of Andrology, vol. 5, no. 3, pp. 231–242, 2003. View at Google Scholar · View at Scopus
  28. C. M. Callaghan, C. Schuler, R. E. Leggett, and R. M. Levin, “Effect of severity and duration of bladder outlet obstruction on catalase and superoxide dismutase activity,” International Journal of Urology, 2013. View at Publisher · View at Google Scholar
  29. J. León, D. Acuña-Castroviejo, G. Escames, D. Tan, and R. J. Reiter, “Melatonin mitigates mitochondrial malfunction,” Journal of Pineal Research, vol. 38, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Amin, A. A. Hamza, A. Kambal, and S. Daoud, “Herbal extracts counteract cisplatin-mediated cell death in rat testis,” Asian Journal of Andrology, vol. 10, no. 2, pp. 291–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Uguralp, U. Usta, and B. Mizrak, “Resveratrol may reduce apoptosis of rat testicular germ cells after experimental testicular torsion,” European Journal of Pediatric Surgery, vol. 15, no. 5, pp. 333–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Paiva, R. M. Russell, and S. K. Dutta, “β-carotene and other carotenoids as antioxidants,” Journal of the American College of Nutrition, vol. 18, no. 5, pp. 426–433, 1999. View at Google Scholar · View at Scopus
  33. L. Hung, M. Su, W. Chu, C. Chiao, W. Chan, and J. Chen, “The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy,” British Journal of Pharmacology, vol. 135, no. 7, pp. 1627–1633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Smith, D. Vantman, J. Ponce, J. Escobar, and E. Lissi, “Total antioxidant capacity of human seminal plasma,” Human Reproduction, vol. 11, no. 8, pp. 1655–1660, 1996. View at Google Scholar · View at Scopus
  35. G. Spanier, H. Xu, N. Xia et al., “Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4),” Journal of Physiology and Pharmacology, vol. 60, supplement 4, pp. 111–116, 2009. View at Google Scholar · View at Scopus