Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 508540, 11 pages
http://dx.doi.org/10.1155/2013/508540
Research Article

Fragmentation of Chitosan by Acids

1Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, Km. 9, P.O. Box 578, Sari, Mazandaran, Iran
2Department of Food Science and Nutrition, Université Laval, Sainte-Foy, Quebec, QC, Canada G1K 7P4
3Department of Chemistry, Université Laval, Sainte-Foy, Quebec, QC, Canada G1K 7P4

Received 14 August 2013; Accepted 2 September 2013

Academic Editors: F. Ito, H.-Y. Liao, and C. Wu

Copyright © 2013 Mohammad Reza Kasaai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Chatelet, O. Damour, and A. Domard, “Influence of the degree of acetylation on some biological properties of chitosan films,” Biomaterials, vol. 22, no. 3, pp. 261–268, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Shahidi, J. K. V. Arachchi, and Y. Jeon, “Food applications of chitin and chitosans,” Trends in Food Science and Technology, vol. 10, no. 2, pp. 37–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Sandford and A. Steinnes, “Biomedical applications of high-purity chitosan, physical, chemical and bioactive properties,” in Water-Soluble Polymers, Synthesis, Solution Properties and Applications, S. W. Shalaby, C. L. McCormick, and G. B. Butler, Eds., vol. 467 of ACS Symposium Series, pp. 430–445, ACS Publishers, Washington, DC, USA, 1991. View at Google Scholar
  4. P. A. Sandford and G. P. Hutchings, “Chitosan—a natural, cationic biopolymer: commercial applications,” in Industrial Polysaccharides, Genetic Engineering, Structure/Property Relations and Applications, M. Yalpani, Ed., pp. 363–375, Elesvier Science, Amsterdam, The Netherlands, 1987. View at Google Scholar
  5. D. Knorr, “Use of chitinous polymers in food,” Food Technology, vol. 38, pp. 85–97, 1984. View at Google Scholar
  6. Y. Jeon, J. Y. V. A. Kamil, and F. Shahidi, “Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod,” Journal of Agricultural and Food Chemistry, vol. 50, no. 18, pp. 5167–5178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Makino and T. Hirata, “Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone,” Postharvest Biology and Technology, vol. 10, no. 3, pp. 247–254, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Cruz, H. L. Lauzon, J. C. Olabarrieta et al., “Impact of chitosan on growth inhibition of micro-organisms isolated from fishery products,” in Proceedings of the 10th International Conferences on Chitin and Chitosan, Montpollier, France, 2006.
  9. D. Knorr, “Recovery and utilization of chitin and chitosan in food processing waste management,” Food Technology, vol. 45, pp. 114–122, 1991. View at Google Scholar
  10. A. El Ghaouth, J. Arul, R. Ponnampalam, and M. Boulet, “Use of chitosan coating to reduce weight loss and maintain quality of cucumbers and bell peppers,” Journal of Food Processing and Preservation, vol. 15, pp. 359–368, 1991. View at Google Scholar
  11. A. El Ghaouth, J. Arul, R. Ponnampalam, and M. Boulet, “Effect of chitosan coating on the storability and quality of fresh strawberries,” Journal of Food Science, vol. 56, pp. 1618–1620, 1991. View at Google Scholar
  12. A. El Ghaouth, R. Ponnampalam, F. Castaigne, and J. Arul, “Chitosan coating to extend the storage life of mature green tomatoes,” HortScience, vol. 27, pp. 1016–1018, 1991. View at Google Scholar
  13. M. V. B. Reddy, K. Belkacemi, R. Corcuff, F. Castaigne, and J. Arul, “Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea quality of strawberry fruit,” Postharvest Biology and Technology, vol. 20, no. 1, pp. 39–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. T. D. Rathke and S. M. Hudson, “Determination of the degree of N-deacetylation in chitin and chitosan as well as their monomer sugar ratio by near infrared spectroscopy,” Journal of Polymer Science A, vol. 31, no. 3, pp. 749–753, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Synowiecki and N. A. Al-Khateeb, “Production, properties, and some new applications of chitin and its derivatives,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 2, pp. 145–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. M. Wu and W. A. Bough, “A study of variables in the chitosan manufactering process in relation to molecular weight distribution, chemical characteristics and waste treatment,” in Proceedings of the 1st International Conference on Chitin/Chitosan, R. A. A. Muzzarelli and E. R. Pariser, Eds., pp. 88–102, MIT Press, Cambride, Mass, USA, 1978. View at Google Scholar
  17. G. G. Allan, L. C. Altman, R. E. Bensinger et al., “Biomedical applications of chitin and chitosan,” in Chitin, Chitosan and Related Enzymes, J. P. Zikakis, Ed., pp. 119–133, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  18. L. A. Hadwiger, B. Fristensky, and R. C. Riggleman, “Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields,” in Chitin, Chitosan, and RelatEd Enzymes, J. P. Zikakis, Ed., pp. 291–302, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  19. R. Olsen, D. Schwartzmiller, W. Weppner, and R. Winandy, “Biomedical applications of chitin and its derivatives,” in Chitin and Chitosan, G. Skjak-Braek, T. Anthonsen, and P. Sandford, Eds., pp. 813–828, Elsevier Applied Science, London, UK, 1989. View at Google Scholar
  20. S. Tokura, Y. Miura, M. Johmen, N. Nishi, and S.-I. Nishimura, “Induction of drug specific antibody and the controlled release of drug by 6-O-carboxymethyl-chitin,” Journal of Controlled Release, vol. 28, pp. 235–241, 1994. View at Google Scholar · View at Scopus
  21. M. R. Kasaai, G. Charlet, and J. Arul, “Master curve for concentration dependence of semi-dilute solution viscosity of chitosan homologues: the Martin equation,” Food Research International, vol. 33, no. 1, pp. 63–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Kikkwa, T. Kawada, I. Furukawa, and T. Sakuno, “A convenient preparation method of chito-oligosaccharides by acid hydrolysis,” Journal of Faculty of Agriculture, Tottori University, vol. 26, pp. 9–17, 1990. View at Google Scholar
  23. O. Scheel and J. Thiem, “Cleavage of chitin by means of aqueous hydrochloric acid and isolation of chito-oligosaccharides,” in Chin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 165–170, European Chitin Society, Atec, Grottammare, Italy, 1997. View at Google Scholar
  24. A. Einbou and K. M. Vårum, “Depolymerization and de-N-acetylation of chitin oligomers in hydrochoric acid,” Bio-Macromolecules, vol. 8, pp. 309–314, 2007. View at Google Scholar
  25. A. Einbu, H. Grasdalen, and K. M. Vårum, “Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid,” Carbohydrate Research, vol. 342, no. 8, pp. 1055–1062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Smidsrød, M. H. Ottøy, M. W. Anthonsen, and K. M. Värum, “Solution properties of chitosan,” in Advances in Chitin Science, Volume II, A. Domard, G. A. F. Roberts, and K. M. Värum, Eds., pp. 402–409, Jacques Andre, Lyon, France, 1997. View at Google Scholar
  27. K. M. Vårum, M. H. Ottøy, and O. Smidsrød, “Acid hydrolysis of chitosans,” Carbohydrate Polymers, vol. 46, pp. 89–98, 2001. View at Google Scholar
  28. Z. Jia and D. Shen, “Effect of reaction temperature and reaction time on the preparation of low-molecular-weight chitosan using phosphoric acid,” Carbohydrate Polymers, vol. 49, no. 4, pp. 393–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Flory, Principles of Polymer Chemistry, pp. 266–316, Cornell University Press, New York, NY, USA, 1953.
  30. C. Tanford, Physical Chemistry of Macromolecules, pp. 390–412, John Wiley, New York, NY, USA, 1961.
  31. G. A. F. Roberts and J. G. Domszy, “Determination of the viscometric constants for chitosan,” International Journal of Biological Macromolecules, vol. 4, no. 6, pp. 374–377, 1982. View at Google Scholar · View at Scopus
  32. M. R. Kasaai, J. Arul, and G. Charlet, “Intrinsic viscosity-molecular weight relationship for chitosan,” Journal of Polymer Science B, vol. 38, no. 19, pp. 2591–2598, 2000. View at Google Scholar · View at Scopus
  33. T. L. Nemzek and J. E. Guillet, “Calculation of accuracy and correction factors in the viscometric determination of chain scission in polymers,” Macromolecules, vol. 10, no. 1, pp. 94–100, 1977. View at Google Scholar · View at Scopus
  34. A. Hirai, H. Odani, and A. Nakajima, “Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy,” Polymer Bulletin, vol. 26, no. 1, pp. 87–94, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. M. R. Kasaai, J. Arul, S. L. Chin, and G. Charlet, “The use of intense femtosecond laser pulses for the fragmentation of chitosan,” Journal of Photochemistry and Photobiology A, vol. 120, no. 3, pp. 201–205, 1999. View at Google Scholar · View at Scopus
  36. G. E. Zaikov, “Kinetic study of the degradation and stabilization of polymers,” Russian Chemical Reviews, vol. 44, no. 10, pp. 833–847, 1975. View at Google Scholar
  37. T. E. Timell, “The acid hydrolysis of glycosides. I. General conditions and the effect of the nature of the aglycone,” Canadian Journal of Chemistry, vol. 42, pp. 1456–1471, 1964. View at Google Scholar
  38. K. Ondera and T. Komano, “Acid hydrolysis of Methyl 2-amino-2-deoxy-D-glucopyranosides,” Agricultural Biological Chemistry, vol. 25, no. 12, pp. 932–936, 1961. View at Google Scholar
  39. F. Niola, N. Basora, E. Chornet, and P. F. Vidal, “A rapid method for the determination of the degree of N-acetylation of chitin-chitosan samples by acid hydrolysis and HPLC,” Carbohydrate Research, vol. 238, pp. 1–9, 1993. View at Publisher · View at Google Scholar · View at Scopus
  40. K. M. Värum, D. Koga, and O. Smidsrød, “Degradation of chitosans,” in Chitin and Chitosan, Chitin and Chitosan in Life Science, T. Uragami, K. Kurita, and T. Fukamizo, Eds., pp. 36–42, Kodansha Scientific, Tokyo, Japan, 2001. View at Google Scholar
  41. J. M. BeMiller, “Acid-catalyzed hydrolysis of glycosides,” in Advances in Carbohydrate Chemistry, M. L. Wolfram, Ed., pp. 25–108, Academic Press, New York, NY, USA, 1967. View at Google Scholar
  42. M. Lazár, T. Bleha, and J. Rychlý, Chemical Reactions of Natural and Synthetic Polymers, pp. 131–165, Ellis Horwood, New York, NY, USA, 1989.
  43. M. S. Feather and J. F. Harris, “The acid-catalyzed hydrolysis of glycopyranosides,” Journal of Organic Chemistry, vol. 30, no. 1, pp. 153–156, 1965. View at Google Scholar · View at Scopus
  44. H. K. Holme, H. Foros, H. Pettersen, M. Dornish, and O. Smidsrød, “Thermal depolymerization of chitosan chloride,” Carbohydrate Polymers, vol. 46, no. 3, pp. 287–294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Belamie, A. Domard, and M. Giraud-Guille, “Study of the solid-state hydrolysis of chitosan in presence of HCl,” Journal of Polymer Science A, vol. 35, no. 15, pp. 3181–3191, 1997. View at Google Scholar · View at Scopus
  46. K. M. Värum, M. H. Ottøy, and O. Smidsrød, “Water-solubility of partially N-acetylated chitosan as a function of pH: effect of chemical composition and depolymerization,” Carbohydrate Polymers, vol. 25, pp. 65–70, 1994. View at Google Scholar
  47. S. Duoxim, Z. Yan, D. Anjie, M. F. A. Goosen, and A. M. Sun, “Studies on the degradation of chitosan and preparation of chitosan-alginate microcapsules,” in Polymers and Biomaterials, International Symposium Proceedings, H. Feng, Y. Han, and L. Huang, Eds., pp. 295–300, Elsevier Science, Amsterdam, The Netherlands, 1991. View at Google Scholar
  48. S. V. Rogozhin, A. I. Gamzazade, M. A. Chlenov, Y. Y. Leonova, A. M. Sklyar, and S. K. Dotdayev, “The partial acidic hydrolysis of chitosan,” Polymer Science USSR, vol. 30, no. 3, pp. 607–614, 1988. View at Google Scholar · View at Scopus
  49. J. A. Rupley, “The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrate for lysozyme,” Biochime et Biophysique Acta, vol. 83, no. 3, pp. 245–255, 1964. View at Google Scholar · View at Scopus
  50. R. J. Nordttveit, K. M. Vårum, and O. Smidsrød, “Degradation of fully water-soluble, partially N-acetylated chitosans with lysozyme,” Carbohydrate Polymers, vol. 23, pp. 253–260, 1994. View at Google Scholar
  51. S. Boryniec, G. Strobin, H. Struszczyk, A. Niekraszewicz, and M. Kucharska, “GPC studies of chitosan degradation,” International Journal of Polymer Analysis and Characterization, vol. 3, no. 4, pp. 359–365, 1997. View at Google Scholar · View at Scopus
  52. S. Hirano, H. Tsuchida, and N. Nagao, “N-acetylation in chitosan and the rate of its enzymic hydrolysis,” Biomaterials, vol. 10, no. 8, pp. 574–576, 1989. View at Google Scholar · View at Scopus
  53. L. R. Berger and R. S. Weiser, “The β-glucosaminidase activity of egg-white lysozyme,” Biochimica et Biophysica Acta, vol. 26, no. 3, pp. 517–521, 1957. View at Google Scholar · View at Scopus
  54. J. Li, J.-F. Revol, and R. H. Marchessault, “Effect of degree of deacetylation of chitin on the properties of chitin crystallites,” Journal of Applied Polymer Science, vol. 65, no. 2, pp. 373–380, 1997. View at Google Scholar · View at Scopus
  55. W. W. Graessley, “The entanglement concept in polymer rheology,” in Advances Polymer Science, vol. 16, pp. 38–48, Springer, Berlin, Germany, 1974. View at Google Scholar
  56. B. L. Hager and G. C. Berry, “Moderately concentrated solutions of polystyrene. 1. Viscosity as a function of concentration, temperature, and molecular weights,” Journal of Polymer Science B, vol. 20, no. 5, pp. 911–928, 1982. View at Google Scholar · View at Scopus