Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 524243, 8 pages
http://dx.doi.org/10.1155/2013/524243
Research Article

MR Image Based Approach for Metal Artifact Reduction in X-Ray CT

1Department of Industrial Engineering and Management, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 7, 21000 Novi Sad, Serbia
2Department of Medical Imaging, University Hospital, Rämistrasse 100, 8091 Zürich, Switzerland

Received 29 August 2013; Accepted 25 September 2013

Academic Editors: C. Kappas and C. S. Morris

Copyright © 2013 Andras Anderla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Blodgett, C. C. Meltzer, and D. W. Townsend, “PET/CT: form and function,” Radiology, vol. 242, no. 2, pp. 360–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. G. Kluetz, C. C. Meltzer, V. L. Villemagne et al., “Combined PET/CT imaging in oncology: impact on patient management,” Clinical Positron Imaging, vol. 3, no. 6, pp. 223–230, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. P. E. Kinahan, D. W. Townsend, T. Beyer, and D. Sashin, “Attenuation correction for a combined 3D PET/CT scanner,” Medical Physics, vol. 25, no. 10, pp. 2046–2063, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Eggers, M. Rieker, B. Kress, J. Fiebach, H. Dickhaus, and S. Hassfeld, “Artefacts in magnetic resonance imaging caused by dental material,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 18, no. 2, pp. 103–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Martinez-Moller, M. Souvatzoglou, G. Delso et al., “Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data,” Journal of Nuclear Medicine, vol. 50, no. 4, pp. 520–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Yan, R. T. Whalen, G. S. Beaupré, S. Y. Yen, and S. Napel, “Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction,” IEEE Transactions on Medical Imaging, vol. 19, no. 1, pp. 1–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. K. M. Hanson, “Noise and contrast discrimination in computed tomography,” Radiology of the Skull and Brain: Technical Aspects of Computed Tomography, vol. 5, pp. 3941–3955, 1981. View at Google Scholar
  8. G. H. Glover, “Compton scatter effects in CT reconstructions,” Medical Physics, vol. 9, no. 6, pp. 860–867, 1982. View at Publisher · View at Google Scholar · View at Scopus
  9. G. H. Glover and N. J. Pelc, “Nonlinear partial volume artifacts in x-ray computed tomography,” Medical Physics, vol. 7, no. 3, pp. 238–248, 1980. View at Publisher · View at Google Scholar · View at Scopus
  10. G. H. Glover and N. J. Pelc, “An algorithm for the reduction of metal clip artifacts in CT reconstructions,” Medical Physics, vol. 8, no. 6, pp. 799–807, 1981. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Abdoli, R. A. J. O. Dierckx, and H. Zaidi, “Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging,” Medical Physics, vol. 39, no. 6, pp. 3343–3360, 2012. View at Google Scholar
  12. R. M. Lewitt and R. H. T. Bates, “Image reconstruction from projections—3. Projection completion methods (theory),” Optik, vol. 50, no. 3, pp. 189–204, 1978. View at Google Scholar · View at Scopus
  13. H. T. Hinderling, P. Ruegsegger, M. Anliker, and C. Dietschi, “Computed tomography reconstruction from hollow projections: an application to in vivo evaluation of artificial hip joints,” Journal of Computer Assisted Tomography, vol. 3, no. 1, pp. 52–57, 1979. View at Google Scholar · View at Scopus
  14. R. L. Morin and D. E. Raeside, “A pattern recognition method for the removal of streaking artifact in computed tomography,” Radiology, vol. 141, no. 1, pp. 229–233, 1981. View at Google Scholar · View at Scopus
  15. L. Cheng and J. Liu, “Metal artifacts reduction in Computed Tomography: a bilateral reprojection approach,” in Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '10), June 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. A. Kennedy, O. Israel, A. Frenkel, R. Bar-Shalom, and H. Azhari, “The reduction of artifacts due to metal hip implants in CT-attenuation corrected PET images from hybrid PET/CT scanners,” Medical and Biological Engineering and Computing, vol. 45, no. 6, pp. 553–562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Sohmura, H. Hojoh, N. Kusumoto, M. Nishida, K. Wakabayashi, and J. Takahashi, “A novel method of removing artifacts because of metallic dental restorations in 3-D CT images of jaw bone,” Clinical Oral Implants Research, vol. 16, no. 6, pp. 728–735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Lange and R. Carson, “EM reconstruction algorithms for emission and transmission tomography,” Journal of Computer Assisted Tomography, vol. 8, no. 2, pp. 306–316, 1984. View at Google Scholar · View at Scopus
  19. G. Wang, D. L. Snyder, J. A. O'Sullivan, and M. W. Vannier, “Iterative deblurring for CT metal artifact reduction,” IEEE Transactions on Medical Imaging, vol. 15, no. 5, pp. 657–664, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Wang, M. W. Vannier, and P.-C. Cheng, “Iterative X-ray cone-beam tomography for metal artifact reduction and local region reconstruction,” Microscopy and Microanalysis, vol. 5, no. 1, pp. 58–65, 1999. View at Google Scholar · View at Scopus
  21. J. Nuyts and S. Stroobants, “Reduction of attenuation correction artifacts in PET-CT,” in Proceedings of the Nuclear Science Symposium Conference Record (IEEE '05), pp. 1895–1899, October 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. H. K. Tuy, “A post-processing algorithm to reduce metallic clip artifacts in CT images,” European Radiology, vol. 3, no. 2, pp. 129–134, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Delso, S. Wollenweber, A. Lonn, F. Wiesinger, and P. Veit-Haibach, “MR-driven metal artifact reduction in PET/CT,” Physics in Medicine and Biology, vol. 58, no. 7, pp. 2267–2280, 2013. View at Google Scholar
  24. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica, vol. 11, pp. 23–27, 1975. View at Google Scholar
  25. M. Carl, K. Koch, and J. Du, “MR imaging near metal with undersampled 3D radial UTE-MAVRIC sequences,” Magnetic Resonance in Medicine, vol. 69, no. 1, pp. 27–36, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Hofmann, B. Pichler, B. Schölkopf, and T. Beyer, “Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 1, pp. 93–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Catana, A. Van Der Kouwe, T. Benner et al., “Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype,” Journal of Nuclear Medicine, vol. 51, no. 9, pp. 1431–1438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Veit-Haibach, F. P. Kuhn, F. Wiesinger, G. Delso, and G. von Schulthess, “PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine,” Magma, vol. 26, no. 1, pp. 25–35, 2013. View at Google Scholar
  29. A. Samarin, F. Kuhn, D. Crook et al., “Image registration accuracy of a sequential, tri-modality pet/ct plus mr imaging setup using dedicated patient transporter systems,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, p. S220, 2011. View at Google Scholar