Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 527491, 8 pages
http://dx.doi.org/10.1155/2013/527491
Research Article

Parametric Appraisal of Process Parameters for Adhesion of Plasma Sprayed Nanostructured YSZ Coatings Using Taguchi Experimental Design

1CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
2Indian Institute of Technology Bhubaneswar, Bhubaneswar 751007, Odisha, India

Received 26 August 2013; Accepted 15 September 2013

Academic Editors: V. Calderón, W. Li, and K. Prabhakaran

Copyright © 2013 Sisir Mantry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Di Girolamo, C. Blasi, M. Schioppa, and L. Tapfer, “Structure and thermal properties of heat treated plasma sprayed ceria-yttria co-stabilized zirconia coatings,” Ceramics International, vol. 36, no. 3, pp. 961–968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Das, S. Datta, D. Basu, and G. C. Das, “Thermal cyclic behavior of glass-ceramic bonded thermal barrier coating on nimonic alloy substrate,” Ceramics International, vol. 35, no. 6, pp. 2123–2129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Chen, Y. Zhao, X. Fan et al., “Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems,” Surface & Coatings Technology, vol. 205, no. 10, pp. 3293–3300, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Wang, C. Zhou, S. Gong, and H. Xu, “Heat treatment of nanostructured thermal barrier coating,” Ceramics International, vol. 33, no. 6, pp. 1075–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Chen, L. Gu, B. Zou, Y. Wang, and X. Cao, “New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying,” Surface & Coatings Technology, vol. 206, no. 8-9, pp. 2265–2274, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Di Girolamo, C. Blasi, L. Pagnotta, and M. Schioppa, “Phase evolution and thermophysical properties of plasma sprayed thick zirconia coatings after annealing,” Ceramics International, vol. 36, no. 8, pp. 2273–2280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. D. Steffens, Z. Babiak, and W. Brandl, “Thermal barrier coatings: some aspects of properties design,” in Proceedings of the 4th National Thermal Spray Conference: Thermal Spray Coatings- Properties, Processes and Applications (Pennsylvania USA, May 1991), T. F. Bernecki, Ed., pp. 289–294, ASM International, Materials Park, Ohio, USA, 1991. View at Google Scholar
  8. C. R. C. Lima and R. Da Exaltação Trevisan, “Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings,” Journal of Thermal Spray Technology, vol. 8, no. 2, pp. 323–327, 1999. View at Google Scholar · View at Scopus
  9. M. Tamura, M. Takahashi, J. Ishii, K. Suzuki, M. Sato, and K. Shimomura, “Multilayered thermal barrier coating for land-based gas turbines,” Journal of Thermal Spray Technology, vol. 8, no. 1, pp. 68–72, 1999. View at Google Scholar · View at Scopus
  10. A. J. Slifka, B. J. Filla, J. M. Phelps, G. Bancke, and C. C. Berndt, “Thermal conductivity of a zirconia thermal barrier coating,” Journal of Thermal Spray Technology, vol. 7, no. 1, pp. 43–46, 1998. View at Google Scholar · View at Scopus
  11. X. Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” Journal of the European Ceramic Society, vol. 24, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Leblanc, “Abrasion and sliding wear of nanostructured ceramic coatings,” in Thermal Spray 2003: Advancing the Science & Applying the Technology, C. Moreau and B. Marple, Eds., pp. 291–299, ASM International, Materials Park, Ohio, USA, 2003. View at Google Scholar
  13. V. Chawla, B. S. Sidhu, D. Puri, and S. Prakash, “Performance of plasma sprayed nanostructured and conventional coatings,” Journal of the Australian Ceramic Society, vol. 44, no. 2, pp. 56–62, 2008. View at Google Scholar · View at Scopus
  14. C. Ding, H. Chen, X. Liu, and Y. Zeng, “Plasma sprayed nanostructured zirconia coatings for wear resistance,” in Thermal Spray 2003: Advancing the Science & Applying the Technology, C. Moreau and B. Marple, Eds., pp. 455–458, ASM International, Materials Park, Ohio, USA, 2003. View at Google Scholar
  15. M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw, and T. D. Xiao, “Development and implementation of plasma sprayed nanostructured ceramic coatings,” Surface & Coatings Technology, vol. 146-147, pp. 48–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Chen and C. X. Ding, “Nanostructured zirconia coating prepared by atmospheric plasma spraying,” Surface & Coatings Technology, vol. 150, no. 1, pp. 31–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Zhao and E. Lugscheider, “Influence of the spraying processes on the properties of 316L stainless steel coatings,” Surface & Coatings Technology, vol. 162, no. 1, pp. 6–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Beauvais, V. Guipont, F. Borit et al., “Process-microstructure-property relationships in controlled atmosphere plasma spraying of ceramics,” Surface & Coatings Technology, vol. 183, no. 2-3, pp. 204–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B.-Y. Chou and E. Chang, “Microstructural characterization of plasma-sprayed hydroxyapatite-10wt% ZrO2 composite coating on titanium,” Biomaterials, vol. 20, no. 19, pp. 1823–1832, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Guessasma, G. Montavon, and C. Coddet, “On the neuronal network concept to describe the thermal spray deposition process: an introduction,” in Proceedings of the International Thermal Spray Conference (ITSC '02), E. Lugscheider and C. C. Berndt, Eds., pp. 57–61, ASM International, Materials Park, Ohio, USA.
  21. C. C. Berndt and C. K. Lin, “Measurement of adhesion for thermally sprayed materials,” Journal of Adhesion Science and Technology, vol. 7, no. 12, pp. 1235–1264, 1993. View at Google Scholar · View at Scopus
  22. R. E. Juárez, D. G. Lamas, G. E. Lascalea, and N. E. Walsöe de Reca, “Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route,” Journal of the European Ceramic Society, vol. 20, no. 2, pp. 133–138, 2000. View at Google Scholar · View at Scopus
  23. V. Viswanathan, K. E. Rea, A. Vaidya, and S. Seal, “Role of spray drying of nanoagglomerates in morphology evolution in nanostructured APS coatings,” Journal of the American Ceramic Society, vol. 91, no. 2, pp. 379–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Vattulainen, E. Hämäläinen, R. Hernberg, P. Vuoristo, and T. Mäntylä, “Novel method for in-flight particle temperature and velocity measurements in plasma spraying using a single CCD camera,” Journal of Thermal Spray Technology, vol. 10, no. 1, pp. 94–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Pierlot, L. Pawlowski, M. Bigan, and P. Chagnon, “Design of experiments in thermal spraying: a review,” Surface & Coatings Technology, vol. 202, no. 18, pp. 4483–4490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. W.-C. Lih, S. H. Yang, C. Y. Su, S. C. Huang, I. C. Hsu, and M. S. Leu, “Effects of process parameters on molten particle speed and surface temperature and the properties of HVOF CrC/NiCr coatings,” Surface & Coatings Technology, vol. 133-134, pp. 54–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. C. Leger, M. Vardelle, A. Vardelle et al., “Plasma sprayed zirconia: relationships between particles parameters, splat formation and deposit generation. Part I: impact and solidification,” in Thermal Spray: Practical Solutions for Engineering Problems, C. C. Berndt, Ed., pp. 623–629, ASM International, Materials Park, Ohio, USA, 1996. View at Google Scholar
  28. R. S. Lima and B. R. Marple, “Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review,” Journal of Thermal Spray Technology, vol. 16, no. 1, pp. 40–63, 2007. View at Publisher · View at Google Scholar · View at Scopus