Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 538067, 6 pages
http://dx.doi.org/10.1155/2013/538067
Research Article

Comparative Evaluation of Agroindustrial Byproducts for the Production of Alkaline Protease by Wild and Mutant Strains of Bacillus subtilis in Submerged and Solid State Fermentation

Institute of Industrial Biotechnology, GC University, Lahore 54000, Pakistan

Received 21 August 2013; Accepted 15 September 2013

Academic Editors: P. Poltronieri and S. Sreenivasaprasad

Copyright © 2013 Hamid Mukhtar and Ikramul Haq. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Godfrey, “Leather,” in Industrial Enzymology, T. Godfrey and S. West, Eds., pp. 285–291, Stocton Press, New York, NY, USA, 2nd edition, 1996. View at Google Scholar
  2. V. F. Soares, L. R. Castilho, E. P. S. Bon, and D. M. G. Freire, “High-yield Bacillus subtilis protease production by solid-state fermentation,” Applied Biochemistry and Biotechnology A, vol. 121, no. 1–3, pp. 311–319, 2005. View at Google Scholar · View at Scopus
  3. M. Shaheen, A. A. Shah, A. Hameed, and F. Hasan, “Influence of culture conditions on production and activity of protease from Bacillus subtilis BS1,” Pakistan Journal of Botany, vol. 40, no. 5, pp. 2161–2169, 2008. View at Google Scholar · View at Scopus
  4. N. R. Pedersen, R. Wimmer, R. Matthiesen, L. H. Pedersen, and A. Gessesse, “Synthesis of sucrose laurate using a new alkaline protease,” Tetrahedron Asymmetry, vol. 14, no. 6, pp. 667–673, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Kim, W. J. Lim, and H. J. Suh, “Feather-degrading Bacillus species from poultry waste,” Process Biochemistry, vol. 37, no. 3, pp. 287–291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Dürrschmidt, J. Mansfeld, and R. Ulbrich-Hofmann, “Differentiation between conformational and autoproteolytic stability of the neutral protease from Bacillus stearothermophilus containing an engineered disulfide bond,” European Journal of Biochemistry, vol. 268, no. 12, pp. 3612–3618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. N. P. Balaban, M. R. Sharipova, A. M. Usmanova, E. L. Itskovich, and I. B. Leshchinskaia, “Alkaline extracellular proteinase from Bacillus intermedius; Isolation, purification, and some properties of the enzyme,” Biokhimiya, vol. 58, no. 12, pp. 1923–1928, 1993. View at Google Scholar · View at Scopus
  8. S. George, V. Raju, M. R. Krishnan, T. V. Subramanian, and K. Jayaraman, “Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins,” Process Biochemistry, vol. 30, no. 5, pp. 457–462, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Abdel-Naby, A.-M. S. Ismail, S. A. Ahmed, and A. F. Abdel Fattah, “Production and immobilization of alkaline protease from Bacillus mycoides,” Bioresource Technology, vol. 64, no. 3, pp. 205–210, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Hiramatsu and T. Ouchi, “Zinc of neutral proteinase from Streptomyces naraensis,” Agricultural and Biological Chemistry, vol. 42, no. 7, pp. 1309–1313, 1978. View at Google Scholar · View at Scopus
  11. S. Ravaud, P. Gouet, R. Haser, and N. Aghajari, “Probing the role of divalent metal ions in a bacterial psychrophilic metalloprotease: binding studies of an enzyme in the crystalline state by X-ray crystallography,” Journal of Bacteriology, vol. 185, no. 14, pp. 4195–4203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Cabral, A. Cherqui, A. Pereira, and N. Simões, “Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 3831–3838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Bintsis, A. Vafopoulou-Mastrojiannaki, E. Litopoulou-Tzanetaki, and R. K. Robinson, “Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine,” Journal of Applied Microbiology, vol. 95, no. 1, pp. 68–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. E. B. Thangam and G. S. Rajkumar, “Purification and characterization of alkaline protease from Alcaligenes faecalis,” Biotechnology and Applied Biochemistry, vol. 35, no. 2, pp. 149–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. H. De Toni, M. F. Richter, J. R. Chagas, J. A. P. Henriques, and C. Termignoni, “Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain,” Canadian Journal of Microbiology, vol. 48, no. 4, pp. 342–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. Presscott and Dunn's, Industrial Microbiology, CBS Publishers & Distributors, New Delhi, India, 4th edition, 2004.
  17. C. E. McDonald and L. L. Chen, “The Lowry modification of the Folin reagent for determination of proteinase activity,” Analytical Biochemistry, vol. 10, no. 1, pp. 175–177, 1965. View at Google Scholar · View at Scopus
  18. H.-S. Joo, C. G. Kumar, G.-C. Park, K. T. Kim, S. R. Paik, and C.-S. Chang, “Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii,” Process Biochemistry, vol. 38, no. 2, pp. 155–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Nilegaonkar, P. P. Kanekar, S. S. Sarnaik, and A. S. Kelkar, “Production, isolation and characterization of extracellular protease of an alkaliphilic strain of Arthrobacter ramosus, MCM B-351 isolated from the alkaline lake of Lonar, India,” World Journal of Microbiology and Biotechnology, vol. 18, no. 8, pp. 785–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. L. I. Rojas-Avelizapa, R. Cruz-Camarillo, M. I. Guerrero, R. Rodríguez-Vázquez, and J. E. Ibarra, “Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis, able to grow in shrimp waste media,” World Journal of Microbiology and Biotechnology, vol. 15, no. 2, pp. 261–268, 1999. View at Google Scholar · View at Scopus
  21. F. Uyar and Z. Baysal, “Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation,” Process Biochemistry, vol. 39, no. 12, pp. 1893–1898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Imtiaz, H. Mukhtar, and I. Haq, “Production of alkaline protease by Bacillus subtilis using solid state fermentation,” African Journal of Microbiology Research, vol. 7, no. 16, pp. 1558–1568, 2013. View at Google Scholar
  23. R. S. Prakasham, C. S. Rao, and P. N. Sarma, “Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation,” Bioresource Technology, vol. 97, no. 13, pp. 1449–1454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Haque, B. A. Nadeem, and M. A. Qadeer, “Biosynthesis of enzyme by solid state fermentation; Production of protease by Bacillus subtilis,” Science International, vol. 2, no. 1, pp. 31–34, 1990. View at Google Scholar