Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 543973, 7 pages
http://dx.doi.org/10.1155/2013/543973
Research Article

Glutathione Redox System in β-Thalassemia/Hb E Patients

1Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
2Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
3Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand

Received 9 August 2013; Accepted 18 September 2013

Academic Editors: A. Guerrasio and A. Saudemont

Copyright © 2013 Ruchaneekorn W. Kalpravidh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Rund and E. Rachmilewitz, “β-thalassemia,” The New England Journal of Medicine, vol. 353, no. 11, pp. 1135–1146, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. L. N. Grinberg, E. A. Rachmilewitz, N. Kitrossky, and M. Chevion, “Hydroxyl radical generation in β-thalassemic red blood cells,” Free Radical Biology and Medicine, vol. 18, no. 3, pp. 611–615, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Amer, D. Atlas, and E. Fibach, “N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells,” Biochimica et Biophysica Acta, vol. 1780, no. 2, pp. 249–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. P. Pfeifer, G. R. Degasperi, M. T. Almeida, A. E. Vercesi, F. F. Costa, and S. T. O. Saad, “Vitamin E supplementation reduces oxidative stress in beta thalassaemia intermedia,” Acta Haematologica, vol. 120, no. 4, pp. 225–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Wu, Y.-Z. Fang, S. Yang, J. R. Lupton, and N. D. Turner, “Glutathione Metabolism and Its Implications for Health,” Journal of Nutrition, vol. 134, no. 3, pp. 489–492, 2004. View at Google Scholar · View at Scopus
  6. Y.-S. Huang, L.-X. Wang, L. Sun et al., “Elevated peroxidative glutathione redox status in atherosclerotic patients with increased thickness of carotid intima media,” Chinese Medical Journal, vol. 122, no. 23, pp. 2827–2832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Piechota and A. Goraca, “Influence of nuclear factor-κB inhibition on endothelin-1 induced lung edemaand oxidative stress in rats,” Journal of Physiology and Pharmacology, vol. 62, no. 2, pp. 183–188, 2011. View at Google Scholar · View at Scopus
  8. Y. Xiao, J. Cui, Y.-H. Shi, J. Sun, Z.-P. Wang, and G.-W. Le, “Effects of duodenal redox status on calcium absorption and related genes expression in high-fat diet-fed mice,” Nutrition, vol. 26, no. 11-12, pp. 1188–1194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Pastore, F. Piemonte, M. Locatelli et al., “Determination of blood total, reduced, and oxidized glutathione in pediatric subjects,” Clinical Chemistry, vol. 47, no. 8, pp. 1467–1469, 2001. View at Google Scholar · View at Scopus
  10. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Google Scholar · View at Scopus
  11. H. R. Andersen, J. B. Nielsen, F. Nielsen, and P. Grandjean, “Antioxidative enzyme activities in human erythrocytes,” Clinical Chemistry, vol. 43, no. 4, pp. 562–568, 1997. View at Google Scholar · View at Scopus
  12. E. Beutler, “Glutathione peroxidase,” in Red Cell Metabolism: A Manual of Biochemical Methods, E. Beutler, Ed., pp. 74–76, Grune & Stratton, London, UK, 1984. View at Google Scholar
  13. C. Maria, R. Leonardo, R. Pietro, V. Mario, V. Isabella, and T. Diana, “Erythrocytes anion transport and oxidative change in β-thalassaemias,” Cell Biology International, vol. 34, no. 6, pp. 655–662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Pantaleo, G. Giribaldi, F. Mannu, P. Arese, and F. Turrini, “Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions,” Autoimmunity Reviews, vol. 7, no. 6, pp. 457–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Cappellini, “Coagulation in the pathophysiology of hemolytic anemias,” Hematology/the Education Program of the American Society of Hematolog, pp. 74–78, 2007. View at Google Scholar · View at Scopus
  16. S. Vento, F. Cainelli, and F. Cesario, “Infections and thalassaemia,” Lancet Infectious Diseases, vol. 6, no. 4, pp. 226–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Khuhapinant, A. Bunyaratvej, N. Tatsumi, M. Pribwai, and S. Fucharoen, “Number and maturation of reticulocytes in various genotypes of thalassaemia as assessed by flow cytometry,” Acta Haematologica, vol. 91, no. 3, pp. 119–125, 1994. View at Google Scholar · View at Scopus
  18. R. W. Kalpravidh, N. Siritanaratkul, P. Insain et al., “Improvement in oxidative stress and antioxidant parameters in β-thalassemia/Hb E patients treated with curcuminoids,” Clinical Biochemistry, vol. 43, no. 4-5, pp. 424–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Cighetti, L. Duca, L. Bortone et al., “Oxidative status and malondialdehyde in β-thalassaemia patients,” European Journal of Clinical Investigation, vol. 32, no. 1, pp. 55–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Koren, D. Fink, O. Admoni, Y. Tennenbaum-Rakover, and C. Levin, “Non-transferrin bound labile plasma iron and iron overload in sickle cell disease: a comparative study between sickle cell disease and β thalassemic patients,” European Journal of Haematology, vol. 84, no. 1, pp. 72–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. B. Walter, E. B. Fung, D. W. Killilea et al., “Oxidative stress and inflammation in iron-overloaded patients with β-thalassaemia or sickle cell disease,” British Journal of Haematology, vol. 135, no. 2, pp. 254–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Trombetta, S. Gangemi, A. Saija et al., “Increased protein carbonyl groups in the serum of patients affected by thalassemia major,” Annals of Hematology, vol. 85, no. 8, pp. 520–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Rahman and W. MacNee, “Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1405–1420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. K. C. Pramanik, S. R. Boreddy, and S. K. Srivastava, “Role of mitochondrial Electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells,” PLoS ONE, vol. 6, no. 5, Article ID e20151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. M. Thompson, D. M. Proctor, L. C. Haws et al., “Investigation of the mode of action underlying the tumorigenic response induced in B6C3F1 mice exposed orally to hexavalent chromium,” Toxicological Sciences, vol. 123, no. 1, pp. 58–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B. R. You, S. Z. Kim, S. H. Kim, and W. H. Park, “Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion,” Molecular and Cellular Biochemistry, vol. 357, no. 1-2, pp. 295–303, 2011. View at Google Scholar · View at Scopus
  27. S. Narasimhan, K. Gokulakrishnan, R. Sampathkumar et al., “Oxidative stress is independently associated with non-alcoholic fatty liver disease (NAFLD) in subjects with and without type 2 diabetes,” Clinical Biochemistry, vol. 43, no. 10-11, pp. 815–821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Bellia, V. Calabrese, F. Guarino et al., “Carnosinase levels in aging brain: redox state induction and cellular stress response,” Antioxidants and Redox Signaling, vol. 11, no. 11, pp. 2759–2775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. O. Price, N. Ercal, R. Nakaoke, and W. A. Banks, “HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells,” Brain Research, vol. 1045, no. 1-2, pp. 57–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. Brown, M. A. Aon, C. R. Frasier et al., “Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 4, pp. 673–679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Anuwatanakulchai, P. Pootrakul, P. Thuvasethakul, and P. Wasi, “Non-transferrin plasma iron in β-thalassaemia/Hb E and haemoglobin H diseases,” Scandinavian Journal of Haematology, vol. 32, no. 2, pp. 153–158, 1984. View at Google Scholar · View at Scopus
  32. P. Pootrakul, V. Vongsmasa, P. La-ongpanich, and P. Wasi, “Serum ferritin levels in thalassemias and the effect of splenectomy,” Acta Haematologica, vol. 66, no. 4, pp. 244–250, 1981. View at Google Scholar · View at Scopus
  33. D. C. Rees, J. B. Clegg, and D. J. Weatherall, “Is hemoglobin instability important in the interaction between hemoglobin E and β thalassemia,” Blood, vol. 92, no. 6, pp. 2141–2146, 1998. View at Google Scholar · View at Scopus
  34. C. Muanprasat, C. Wongborisuth, N. Pathomthongtaweechai, S. Satitsri, and S. Hongeng, “Protection against oxidative stress in beta thalassemia/hemoglobin E erythrocytes by inhibitors of glutathione efflux transporters,” PLoS ONE, vol. 8, no. 1, Article ID e55685, 2013. View at Google Scholar
  35. A. Kode, S. Rajendrasozhan, S. Caito, S.-R. Yang, I. L. Megson, and I. Rahman, “Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells,” American Journal of Physiology, vol. 294, no. 3, pp. L478–L488, 2008. View at Publisher · View at Google Scholar · View at Scopus