Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 545741, 7 pages
Research Article

Sponge-Like: A New Protocol for Preparing Bacterial Ghosts

1Department of Protein Research, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, Egypt
2Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
3Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
4Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt

Received 6 January 2013; Accepted 31 January 2013

Academic Editors: J. E. Barboza-Corona and K. Bayer

Copyright © 2013 Amro A. Amara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Bacterial Ghosts (BGs) received an increasing interest in the recent years for their promising medicinal and pharmaceutical applications. In this study, for the first time we introduce a new protocol for BGs production. E. coli BL21 (DE3) pLysS (Promega) was used as a model to establish a general protocol for BGs preparation. The protocol is based on using active chemical compounds in concentrations less than the Minimum Inhibition Concentration (MIC). Those chemical compounds are SDS, NaOH, and H2O2. Plackett-Burman experimental design was used to map the best conditions for BGs production. Normal and electronic microscopes were used to evaluate the BGs quality (BGQ). Spectrophotometer was used to evaluate the amount of the released protein and DNA. Agarose gel electrophoresis was used to determine the existence of any residue of DNA after each BGs preparation. Viable cells, which existed after running this protocol, were subjected to lysis by inducing the lysozyme gene carried on pLysS plasmid. This protocol is able to produce BGs that can be used in different biotechnological applications.