Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 562763, 10 pages
http://dx.doi.org/10.1155/2013/562763
Research Article

Associates of an Elevated Natriuretic Peptide Level in Stable Heart Failure Patients: Implications for Targeted Management

1Chronic Cardiovascular Disease Management Unit, St. Vincent's Healthcare Group/St. Michael's Hospital, Dublin, Ireland
2School of Medicine & Medical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland

Received 14 August 2013; Accepted 10 October 2013

Academic Editors: C. Amarelli and C. Carbucicchio

Copyright © 2013 Aftab Jan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Moertl, R. Berger, A. Hammer, M. Huelsmann, R. Hutuleac, and R. Pacher, “B-type natriuretic peptide predicts benefit from a home-based nurse care in chronic heart failure,” Journal of Cardiac Failure, vol. 15, no. 3, pp. 233–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Koglin, S. Pehlivanli, M. Schwaiblmair, M. Vogeser, P. Cremer, and W. VonScheidt, “Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure,” Journal of the American College of Cardiology, vol. 38, no. 7, pp. 1934–1941, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. de Groote, J. Dagorn, B. Soudan, N. Lamblin, E. McFadden, and C. Bauters, “B-type natriuretic peptide and peak exercise oxygen consumption provide independent information for risk stratification in patients with stable congestive heart failure,” Journal of the American College of Cardiology, vol. 43, no. 9, pp. 1584–1589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nishii, T. Inomata, H. Takehana et al., “Prognostic utility of B-type natriuretic peptide assessment in stable low-risk outpatients with nonischemic cardiomyopathy after decompensated heart failure,” Journal of the American College of Cardiology, vol. 51, no. 24, pp. 2329–2335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Doust, E. Pietrzak, A. Dobson, and P. P. Glasziou, “How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review,” The British Medical Journal, vol. 330, no. 7492, pp. 625–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Jourdain, G. Jondeau, F. Funck et al., “Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure. The STARS-BNP multicenter study,” Journal of the American College of Cardiology, vol. 49, no. 16, pp. 1733–1739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. W. Troughton, C. M. Frampton, T. G. Yandle, E. A. Espiner, M. G. Nicholls, and A. M. Richards, “Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations,” The Lancet, vol. 355, no. 9210, pp. 1126–1130, 2000. View at Google Scholar · View at Scopus
  8. M. Pfisterer, P. Buser, H. Rickli et al., “BNP-guided versus symptom-guided heart failure therapy the trial of intensified versus standard medical therapy in elderly patients with congestive heart failure (TIME-CHF) randomized trial,” The Journal of the American Medical Association, vol. 301, no. 4, pp. 383–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. G. Lainchbury, R. W. Troughton, K. M. Strangman et al., “N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure. Results from the BATTLESCARRED (NT-proBNP-assisted treatment to lessen serial cardiac readmissions and death) trial,” Journal of the American College of Cardiology, vol. 55, no. 1, pp. 53–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Vanderheyden, M. Goethals, S. Verstreken et al., “Wall stress modulates brain natriuretic peptide production in pressure overload cardiomyopathy,” Journal of the American College of Cardiology, vol. 44, no. 12, pp. 2349–2354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. K. Therkelsen, B. A. Groenning, A. Kjaer, J. H. Svendsen, and G. B. Jensen, “ANP and BNP in atrial fibrillation before and after cardioversion—and their relationship to cardiac volume and function,” International Journal of Cardiology, vol. 127, no. 3, pp. 396–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Iwanaga, I. Nishi, S. Furuichi et al., “B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure,” Journal of the American College of Cardiology, vol. 47, no. 4, pp. 742–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Niizuma, Y. Iwanaga, T. Yahata et al., “Impact of left ventricular end-diastolic wall stress on plasma B-type natriuretic peptide in heart failure with chronic kidney disease and end-stage renal disease,” Clinical Chemistry, vol. 55, no. 7, pp. 1347–1353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. P. Letsas, G. S. Filippatos, L. K. Pappas et al., “Determinants of plasma NT-pro-BNP levels in patients with atrial fibrillation and preserved left ventricular ejection fraction,” Clinical Research in Cardiology, vol. 98, no. 2, pp. 101–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. W. Stevenson and J. K. Perloff, “The limited reliability of physical signs for estimating hemodynamics in chronic heart failure,” The Journal of the American Medical Association, vol. 261, no. 6, pp. 884–888, 1989. View at Google Scholar · View at Scopus
  16. Y. Takami, T. Horio, Y. Iwashima et al., “Diagnostic and prognostic value of plasma brain natriuretic peptide in non-dialysis-dependent CRF,” The American Journal of Kidney Diseases, vol. 44, no. 3, pp. 420–428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Hawkridge, D. M. Heublein, H. R. Bergen III, A. Cataliotti, J. C. Burnett Jr., and D. C. Muddiman, “Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17442–17447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. S. P. Lam, J. C. Burnett Jr., L. Costello-Boerrigter, R. J. Rodeheffer, and M. M. Redfield, “Alternate circulating pro-B-type natriuretic peptide and B-type natriuretic peptide forms in the general population,” Journal of the American College of Cardiology, vol. 49, no. 11, pp. 1193–1202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Kaya, R. Akdemir, H. Gunduz et al., “Changes in serum natriuretic peptide levels after percutaneous closure of small to moderate ventricular septal defects,” The Scientific World Journal, vol. 2012, Article ID 328697, 5 pages, 2012. View at Publisher · View at Google Scholar
  20. R. M. Lang, M. Bierig, R. B. Devereux et al., “Recommendations for chamber quantification: a report from the American society of echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology,” Journal of the American Society of Echocardiography, vol. 18, no. 12, pp. 1440–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Reichek, J. Wilson, and M. S. J. Sutton, “Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application,” Circulation, vol. 65, no. 1, pp. 99–108, 1982. View at Google Scholar · View at Scopus
  22. G. C. Fonarow, W. F. Peacock, C. O. Phillips, M. M. Givertz, and M. Lopatin, “Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure,” Journal of the American College of Cardiology, vol. 49, no. 19, pp. 1943–1950, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Cohen-Solal, D. Logeart, B. Huang, D. Cai, M. S. Nieminen, and A. Mebazaa, “Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure,” Journal of the American College of Cardiology, vol. 53, no. 25, pp. 2343–2348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Logeart, G. Thabut, P. Jourdain et al., “Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure,” Journal of the American College of Cardiology, vol. 43, no. 4, pp. 635–641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Cournot, P. Leprince, D. Sylvain, and J. Ferrières, “Usefulness of inhospital change in B-type natriuretic peptide levels in predicting long-term outcome in elderly patients admitted for decompensated heart failure,” The American Journal of Geriatric Cardiology, vol. 16, no. 1, pp. 8–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Masson, R. Latini, I. S. Anand et al., “Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (valsartan heart failure trial),” Journal of the American College of Cardiology, vol. 52, no. 12, pp. 997–1003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Berger, D. Moertl, S. Peter et al., “N-terminal Pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure. A 3-arm, prospective, randomized pilot study,” Journal of the American College of Cardiology, vol. 55, no. 7, pp. 645–653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. L. J. Ellmers, J. W. Knowles, H. S. Kim, O. Smithies, N. Maeda, and V. A. Cameron, “Ventricular expression of natriuretic peptides in NPR1-/- mice with cardiac hypertrophy and fibrosis,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 283, no. 2, pp. H707–H714, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Tamura, Y. Ogawa, H. Chusho et al., “Cardiac fibrosis in mice lacking brain natriuretic peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4239–4244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Martos, J. Baugh, M. Ledwidge et al., “Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction,” Circulation, vol. 115, no. 7, pp. 888–895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. J. Mak, M. T. Ledwidge, C. J. Watson et al., “Natural history of markers of collagen turnover in patients with early diastolic dysfunction and impact of eplerenone,” Journal of the American College of Cardiology, vol. 54, no. 18, pp. 1674–1682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Zannad, F. Alla, B. Dousset, A. Perez, and B. Pitt, “Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES),” Circulation, vol. 102, no. 22, pp. 2700–2706, 2000. View at Google Scholar · View at Scopus
  33. R. J. MacFadyen, C. S. Barr, and A. D. Struthers, “Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients,” Cardiovascular Research, vol. 35, no. 1, pp. 30–34, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. M. J. Li, C. X. Huang, E. Okello, T. Yanhong, and S. Mohamed, “Treatment with spironolactone for 24 weeks decreases the level of matrix metalloproteinases and improves cardiac function in patients with chronic heart failure of ischemic etiology,” Canadian Journal of Cardiology, vol. 25, no. 9, pp. 523–526, 2009. View at Google Scholar · View at Scopus
  35. M. Böhm, A. A. Voors, J. Ketelslegers et al., “Biomarkers: optimizing treatment guidance in heart failure,” Clinical Research in Cardiology, vol. 100, no. 11, pp. 973–981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Ledwidge, J. Gallagher, C. Conlon et al., “Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial,” The Journal of the American Medical Association, vol. 310, no. 1, pp. 66–74, 2013. View at Publisher · View at Google Scholar