Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 565813, 8 pages
http://dx.doi.org/10.1155/2013/565813
Research Article

Amelioration of Behavioural, Biochemical, and Neurophysiological Deficits by Combination of Monosodium Glutamate with Resveratrol/Alpha-Lipoic Acid/Coenzyme Q10 in Rat Model of Cisplatin-Induced Peripheral Neuropathy

Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, Karnataka-560027, India

Received 31 August 2013; Accepted 2 October 2013

Academic Editors: J.-T. Cheng and S. Wu

Copyright © 2013 Naini Bhadri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hori, N. Ozaki, S. Suzuki, and Y. Sugiura, “Upregulations of P2X3 and ASIC3 involve in hyperalgesia induced by cisplatin administration in rats,” Pain, vol. 149, no. 2, pp. 393–405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Mollman, D. J. Glover, W. M. Hogan, and R. E. Furman, “Cisplatin neuropathy: risk factors, prognosis, and protection by WR-2721,” Cancer, vol. 61, no. 11, pp. 2192–2195, 1988. View at Google Scholar · View at Scopus
  3. S. B. Park, A. V. Krishnan, C. S.-Y. Lin, D. Goldstein, M. Friedlander, and M. C. Kiernan, “Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies,” Current Medicinal Chemistry, vol. 15, no. 29, pp. 3081–3094, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. S. McDonald, K. R. Randon, A. Knight, and A. J. Windebank, “Cisplatin preferentially binds to DNA in dorsal root ganglion neurons in vitro and in vivo: a potential mechanism for neurotoxicity,” Neurobiology of Disease, vol. 18, no. 2, pp. 305–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Alaedini, Z. Xiang, H. Kim, Y.-J. Sung, and N. Latov, “Up-regulation of apoptosis and regeneration genes in the dorsal root ganglia during cisplatin treatment,” Experimental Neurology, vol. 210, no. 2, pp. 368–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pace, A. Savarese, M. Picardo et al., “Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy,” Journal of Clinical Oncology, vol. 21, no. 5, pp. 927–931, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kumar, R. K. Kaundal, S. Iyer, and S. S. Sharma, “Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy,” Life Sciences, vol. 80, no. 13, pp. 1236–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. H. I. Kim, T. H. Kim, and J.-H. Song, “Resveratrol inhibits Na+ currents in rat dorsal root ganglion neurons,” Brain Research, vol. 1045, no. 1-2, pp. 134–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Ernster and G. Dallner, “Biochemical, physiological and medical aspects of ubiquinone function,” Biochimica et Biophysica Acta, vol. 1271, no. 1, pp. 195–204, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. G. P. Littarru and P. Langsjoen, “Coenzyme Q10 and statins: biochemical and clinical implications,” Mitochondrion, vol. 7, pp. S168–S174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. R. Galpern and M. E. Cudkowicz, “Coenzyme Q treatment of neurodegenerative diseases of aging,” Mitochondrion, vol. 7, pp. S146–S153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. P. Shay, R. F. Moreau, E. J. Smith, A. R. Smith, and T. M. Hagen, “Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1149–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Packer, E. H. Witt, and H. J. Tritschler, “Alpha-lipoic acid as a biological antioxidant,” Free Radical Biology and Medicine, vol. 19, no. 2, pp. 227–250, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. B. E. Cairns, X. Dong, M. K. Mann et al., “Systemic administration of monosodium glutamate elevates intramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers,” Pain, vol. 132, no. 1-2, pp. 33–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. Burin and B. Stoll, “Metabolic fate and function of dietary glutamate in the gut,” The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 850S–856S, 2009. View at Google Scholar
  16. F. M. Boyle, H. R. Wheeler, and G. M. Shenfield, “Amelioration of experimental cisplatin and paclitaxel neuropathy with glutamate,” Journal of Neuro-Oncology, vol. 41, no. 2, pp. 107–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Anjaneyulu, A. Berent-Spillson, and J. W. Russell, “Metabotropic glutamate receptors (mGluRs) and diabetic neuropathy,” Current Drug Targets, vol. 9, no. 1, pp. 85–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Arkaravichien, N. Sattayasai, S. Daduang, and J. Sattayasai, “Dose-dependent effects of glutamate in pyridoxine-induced neuropathy,” Food and Chemical Toxicology, vol. 41, no. 10, pp. 1375–1380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Bianchi, M. Brines, G. Lauria et al., “Protective effect of erythropoietin and its carbamylated derivative in experimental cisplatin peripheral neurotoxicity,” Clinical Cancer Research, vol. 12, no. 8, pp. 2607–2612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. P. Rybak, K. Husain, C. Whitworth, and S. M. Somani, “Dose dependent protection by lipoic acid against cisplatin-induced ototoxicity in rats: antioxidant defense system,” Toxicological Sciences, vol. 47, no. 2, pp. 195–202, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ishrat, M. B. Khan, M. N. Hoda et al., “Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats,” Behavioural Brain Research, vol. 171, no. 1, pp. 9–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Necker and R. F. Hellon, “Noxious thermal input from the rat tail: modulation by descending inhibitory influences,” Pain, vol. 4, pp. 231–242, 1978. View at Google Scholar
  23. M. A. Ansari, S. J. Ahmad, R. Khanum, and M. Akhtar, “Pharmacological investigation of protective effects of Nigella sativa oil in experimental diabetic neuropathy in rats,” Indian Journal of Pharmaceutical Education and Research, vol. 43, no. 2, pp. 166–176, 2009. View at Google Scholar · View at Scopus
  24. S. G. Liasson, “Nerve conduction changes in experimental diabetes,” Journal of Clinical Investigation, vol. 43, no. 12, pp. 2353–2358, 1964. View at Google Scholar
  25. V. Tiwari, A. Kuhad, and K. Chopra, “Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy,” Pain, vol. 145, no. 1-2, pp. 129–135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Jiang, C. Guo, M. R. Vasko, and M. R. Kelley, “Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons,” Cancer Research, vol. 68, no. 15, pp. 6425–6434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Van Doorn, C.-M. Leijdekkers, and P. T. Henderson, “Synergistic effects of phorone on the hepatotoxicity of bromobenzene and paracetamol in mice,” Toxicology, vol. 11, no. 3, pp. 225–233, 1978. View at Google Scholar · View at Scopus
  28. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Garcia, J. P. Cata, P. M. Dougherty, and R. G. Smith, “Ghrelin prevents cisplatin-induced mechanical hyperalgesia and cachexia,” Endocrinology, vol. 149, no. 2, pp. 455–460, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kumar and S. S. Sharma, “NF-κB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy,” Biochemical and Biophysical Research Communications, vol. 394, no. 2, pp. 360–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Melli, M. Taiana, F. Camozzi et al., “Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy,” Experimental Neurology, vol. 214, no. 2, pp. 276–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. F. L. Crane, Y. Hatefi, and R. L. Lester C Widmer, “Isolation of a quinone from beef heart mitochondria,” Biochimica et Biophysica Acta, vol. 25, no. 1, pp. 220–221, 1957. View at Google Scholar
  33. F. L. Crane, “Biochemical functions of coenzyme Q10,” Journal of the American College of Nutrition, vol. 20, no. 6, pp. 591–598, 2001. View at Google Scholar · View at Scopus