Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 594950, 4 pages
Research Article

Comparison of the Radiopacities of Different Root-End Filling and Repair Materials

1Department of Endodontics, Faculty of Dentistry, Yeditepe University, Bagdat Caddesi 238, Göztepe, 34728 Istanbul, Turkey
2Department of Oral Radiology, Faculty of Dentistry, Yeditepe University, Istanbul, Turkey

Received 22 August 2013; Accepted 10 September 2013

Academic Editors: S. Belli and G. Plotino

Copyright © 2013 Jale Tanalp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study evaluated the radiopacity of 3 repair materials, Biodentine, MM-MTA, and MTA Angelus. Standardized cylindrical rings were prepared. Samples of Biodentine MM-MTA and MTA Angelus were prepared ( in each group), filled into the rings, and preserved at 37°C until setting. A 1 mm thick dentin slice was used as control. All set specimens were removed and radiographed along with the dentine slice and a graduated aluminium step wedge. Digital images were transferred to the computer using a software. The radiographic densities of the specimens were determined, and the values were converted into millimetres of aluminium (mm Al). One-way ANOVA was used for intergroup comparison, whereas Tukey HSD test was used for detecting the group with the difference. The mean radiopacities of Biodentine, MTA Angelus, and MM-MTA were 2.8 ± 0.48, 4.72 ± 0.45, and 5.18 ± 0.51 mm Al, respectively. The radiopacity of Biodentine was significantly lower compared to other materials ( ), whereas no significant difference was noted between MTA Angelus and MM-MTA ( ). All materials had significantly higher radiopacities compared to dentine. The relatively lower radiopacity of Biodentine can be improved to achieve more reliable results in procedures such as retrograde fillings.