Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 607258, 7 pages
http://dx.doi.org/10.1155/2013/607258
Research Article

Relevance of Biofilms in the Pathogenesis of Shiga-Toxin-Producing Escherichia coli Infection

1IMBIV, CONICET y Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
2Laboratorio de Inmunoquímica y Biotecnología, Departamento de SAMP, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, 7000 Tandil, Argentina

Received 30 August 2013; Accepted 25 September 2013

Academic Editors: H. P. Bais and T. Gupta

Copyright © 2013 Natalia Angel Villegas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Leotta, E. S. Miliwebsky, I. Chinen et al., “Characterisation of Shiga toxin-producing Escherichia coli O157 strains isolated from humans in Argentina, Australia and New Zealand,” BMC Microbiology, vol. 8, article 46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. C. Mercado, A. Gioffré, S. M. Rodríguez et al., “Non-O157 Shiga toxin-producing Escherichia coli isolated from diarrhoeic calves in Argentina,” Journal of Veterinary Medicine B, vol. 51, no. 2, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Bergan, A. B. DyveLingelem, R. Simm, T. Skotland, and K. Sandvig, “Shiga toxins,” Toxicon, vol. 60, pp. 1085–1107, 2012. View at Google Scholar
  4. D. A. Rasko, D. R. Webster, J. W. Sahl et al., “Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany,” The New England Journal of Medicine, vol. 365, no. 8, pp. 709–717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Rivas, S. Sosa-Estani, J. Rangel et al., “Risk factors for sporadic Shiga toxin-producing Escherichia coli infections in children, Argentina,” Emerging Infectious Diseases, vol. 14, no. 5, pp. 763–771, 2008. View at Google Scholar · View at Scopus
  6. A. Krüger, P. M. A. Lucchesi, and A. E. Parma, “Verotoxins in bovine and meat verotoxin-producing Escherichia coli isolates: type, number of variants, and relationship to cytotoxicity,” Applied and Environmental Microbiology, vol. 77, no. 1, pp. 73–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Fernández, A. Krüger, R. Polifroni et al., “Characterization of Shiga toxin producing Escherichia coli O130:H11 and O178:H19 isolated from dairy cows,” Frontiers in Cellular and Infection Microbiology, vol. 8, pp. 3–9, 2013. View at Google Scholar
  8. W. Costerton, R. Veeh, M. Shirtliff, M. Pasmore, C. Post, and G. Ehrlich, “The application of biofilm science to the study and control of chronic bacterial infections,” Journal of Clinical Investigation, vol. 112, no. 10, pp. 1466–1477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-H. Ryu, H. Kim, and L. R. Beuchat, “Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature,” Journal of Food Protection, vol. 67, no. 10, pp. 2123–2131, 2004. View at Google Scholar · View at Scopus
  10. J.-H. Ryu and L. R. Beuchat, “Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine,” Applied and Environmental Microbiology, vol. 71, no. 1, pp. 247–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Santos Mendonça, A. M. F. Morelli, J. A. M. Pereira, M. M. de Carvalho, and N. L. de Souza, “Prediction of Escherichia coli O157:H7 adhesion and potential to form biofilm under experimental conditions,” Food Control, vol. 23, no. 2, pp. 389–396, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Reisner, K. A. Krogfelt, B. M. Klein, E. L. Zechner, and S. Molin, “In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors,” Journal of Bacteriology, vol. 188, no. 10, pp. 3572–3581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Arce Miranda, C. E. Sotomayor, I. Albesa, and M. G. Paraje, “Oxidative and nitrosative stress in Staphylococcus aureus biofilm,” FEMS Microbiology Letters, vol. 315, no. 1, pp. 23–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Baronetti, N. A. Villegas, M. G. Paraje, and I. Albesa, “Nitric oxide-mediated apoptosis in rat macrophages subjected to Shiga toxin 2 from Escherichia coli,” Microbiology and Immunology, vol. 55, no. 4, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Baronetti, N. Angel Villegas, V. Aiassa, M. G. Paraje, and I. Albesa, “Hemolysin from Escherichia coli induces oxidative stress in blood,” Toxicon, vol. 70, pp. 15–20, 2013. View at Google Scholar
  16. V. Aiassa, A. I. Barnes, and I. Albesa, “Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis,” Biochemical and Biophysical Research Communications, vol. 393, no. 1, pp. 84–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Albrecht, M. G. Pellarin, J. Baronetti, M. J. Rojas, I. Albesa, and A. J. Eraso, “Chemiluminescence determination of antioxidant property of Zizyphus mistol and Prosopis alba during oxidative stress generated in blood by Hemolytic Uremic Syndrome-producing Escherichia coli,” Luminescence, vol. 26, no. 6, pp. 424–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. O'Toole and R. Kolter, “Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis,” Molecular Microbiology, vol. 28, no. 3, pp. 449–461, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. A. N. Hassan and J. F. Frank, “Attachment of Escherichia coli O157:H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production,” International Journal of Food Microbiology, vol. 96, no. 1, pp. 103–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Baldeck and R. E. Marquis, “Targets for hydrogen-peroxide-induced damage to suspension and biofilm cells of Streptococcus mutans,” Canadian Journal of Microbiology, vol. 54, no. 10, pp. 868–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Rivas, G. A. Dykes, and N. Fegan, “A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method,” Journal of Microbiological Methods, vol. 69, no. 1, pp. 44–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. G. Paraje, S. G. Correa, I. Albesa, and C. E. Sotomayor, “Lipase of Candida albicans induces activation of NADPH oxidase and l-arginine pathways on resting and activated macrophages,” Biochemical and Biophysical Research Communications, vol. 390, no. 2, pp. 263–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. I. Landoni, M. de Campos-Nebel, P. Schierloh et al., “Shiga toxin 1-induced inflammatory response in lipopolysaccharide- sensitized astrocytes is mediated by endogenous tumor necrosis factor alpha,” Infection and Immunity, vol. 78, no. 3, pp. 1193–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chen, S. M. Lee, and Y. Mao, “Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress,” International Journal of Food Microbiology, vol. 93, no. 3, pp. 281–286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Lim, M. Jana, T. T. Luong, and C. Y. Lee, “Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus,” Journal of Bacteriology, vol. 186, no. 3, pp. 722–729, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Mai-Prochnow, P. Lucas-Elio, S. Egan et al., “Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria,” Journal of Bacteriology, vol. 190, no. 15, pp. 5493–5501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. R. Boles and P. K. Singh, “Endogenous oxidative stress produces diversity and adaptability in biofilm communities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12503–12508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. H. Kim, Y. Lee, S. Kim et al., “The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157:H7 in the formation of biofilms,” Proteomics, vol. 6, no. 23, pp. 6181–6193, 2006. View at Publisher · View at Google Scholar · View at Scopus