Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 607830, 6 pages
Research Article

Mathematical Characterization of Protein Transmembrane Regions

1Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
2Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Received 26 February 2013; Accepted 26 March 2013

Academic Editors: Y. Cai and J. Wang

Copyright © 2013 Amrita Roy Choudhury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Graphical bioinformatics has paved a unique way of mathematical characterization of proteins and proteomic maps. The graphics representations and the corresponding mathematical descriptors have proved to be useful and have provided unique solutions to problems related to identification, comparisons, and analyses of protein sequences and proteomics maps. Based on sequence information alone, these descriptors are independent from physiochemical properties of amino acids and evolutionary information. In this work, we have presented invariants from amino acid adjacency matrix and decagonal isometries matrix as potential descriptors of protein sequences. Encoding protein sequences into amino acid adjacency matrix is already well established. We have shown its application in classification of transmembrane and nontransmembrane regions of membrane protein sequences. We have introduced the dodecagonal isometries matrix, which is a novel method of encoding protein sequences based on decagonal isometries group.