Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 641420, 11 pages
http://dx.doi.org/10.1155/2013/641420
Research Article

Micelle-Assisted Synthesis of Al2O3·CaO Nanocatalyst: Optical Properties and Their Applications in Photodegradation of 2,4,6-Trinitrophenol

1Department of Chemistry, GC University Lahore, 54000 Lahore, Pakistan
2School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

Received 26 August 2013; Accepted 19 September 2013

Academic Editors: O. Gonzalez Diaz and J. Yu

Copyright © 2013 Ayesha Imtiaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Henderson, T. Jin, and J. M. White, “The desorption and decomposition of trinitrotoluene adsorbed on metal oxide powders,” Applied Surface Science, vol. 27, no. 1, pp. 127–140, 1986. View at Google Scholar · View at Scopus
  2. K. J. Klabunde and R. Richards, Nanoscale Materials in Chemistry, John Wiley & Sons, 2009.
  3. T. Z. Tzou and S. W. Weller, “Catalytic oxidation of dimethyl methylphosphonate,” Journal of Catalysis, vol. 146, no. 2, pp. 370–374, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, “Reactions of VX, GD, and HD with nanosize MgO,” The Journal of Physical Chemistry B, vol. 103, no. 16, pp. 3225–3228, 1999. View at Google Scholar · View at Scopus
  5. G. W. Wagner, O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, “Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD,” The Journal of Physical Chemistry B, vol. 104, no. 21, pp. 5118–5123, 2000. View at Google Scholar · View at Scopus
  6. G. W. Wagner, L. R. Procell, R. J. O'Connor et al., “Reactions of VX, GB, GD, and HD with nanosize AL2O3. Formation of aluminophosphonates,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1636–1644, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Kanan, Z. Lu, and C. P. Tripp, “A comparative study of the adsorption of chloro- and non-chloro-containing organophosphorus compounds on WO3,” The Journal of Physical Chemistry B, vol. 106, no. 37, pp. 9576–9580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Ma, M. Zheng, W. Liu, Y. Qian, B. Zhang, and W. Liu, “Dechlorination of hexachlorobenzene using ultrafine Ca–Fe composite oxides,” Journal of Hazardous Materials, vol. 127, no. 1–3, pp. 156–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Chen and C. T. Tang, “Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene,” Journal of Hazardous Materials, vol. 142, no. 1-2, pp. 88–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. O. Gordon, B. M. Tissue, and J. R. Morris, “Adsorption and decomposition of dimethyl methylphosphonate on Y2O3 nanoparticles,” The Journal of Physical Chemistry C, vol. 111, no. 8, pp. 3233–3240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. O. B. Koper, S. Rajagopalan, S. Winecki, and K. J. Klabunde, “Nanoparticle metal oxides for chlorocarbon and organophosphonate remediation,” in Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors, pp. 3–24, 2007. View at Google Scholar
  12. D. Cropek, P. A. Kemme, O. V. Makarova, L. X. Chen, and T. Rajh, “Selective photocatalytic decomposition of nitrobenzene using surface modified TiO2 nanoparticles,” The Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8311–8318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. W. Wagner, Q. Chen, and Y. Wu, “Reactions of VX, GD, and HD with nanotubular titania,” The Journal of Physical Chemistry C, vol. 112, no. 31, pp. 11901–11906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Saxena, H. Mangal, P. K. Rai, A. S. Rawat, V. Kumar, and M. Datta, “Adsorption of diethylchlorophosphate on metal oxide nanoparticles under static conditions,” Journal of Hazardous Materials, vol. 180, no. 1–3, pp. 566–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Patil, A. R. Bari, M. D. Shinde, V. Deo, and M. P. Kaushik, “Detection of dimethyl methyl phosphonate—a simulant of sarin: the highly toxic chemical warfare—using platinum activated nanocrystalline ZnO thick films,” Sensors and Actuators B, vol. 161, no. 1, pp. 372–380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Halasz, C. Groom, E. Zhou et al., “Detection of explosives and their degradation products in soil environments,” Journal of Chromatography A, vol. 963, no. 1-2, pp. 411–418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. USEPA, Health and Environmental Effects Profile for Nitrophenols, Environmental Protection Agency, Environmental Criteria and Assessment Office, Cincinnati, Ohio, USA, 1985.
  18. R. Belloli, E. Bolzacchini, L. Clerici, B. Rindone, G. Sesana, and V. Librando, “Nitrophenols in air and rainwater,” Environmental Engineering Science, vol. 23, no. 2, pp. 405–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Shimazu, A. Mulchandani, and W. Chen, “Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase,” Biotechnology and Bioengineering, vol. 76, no. 4, pp. 318–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. B. Lippincot, List of Worldwide Hazardous Chemical and Pollutants, The Forum for Scientific Excellence, New York, NY, USA, 1990.
  21. M. S. Dieckmann and K. A. Gray, “A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries,” Water Research, vol. 30, no. 5, pp. 1169–1183, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ali, M. A. Farrukh, and M. Khaleeq-ur-Rahman, “Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared under aqueous-organic medium,” Korean Journal of Chemical Engineering, vol. 30, no. 11, 2013. View at Publisher · View at Google Scholar
  23. A. Gutés, F. Céspedes, S. Alegret, and M. del Valle, “Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis,” Biosensors and Bioelectronics, vol. 20, no. 8, pp. 1668–1673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Tanaka, K. Padermpole, and T. Hisanaga, “Photocatalytic degradation of commercial azo dyes,” Water Research, vol. 34, no. 1, pp. 327–333, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. K. W. Hofmann, H.-J. Knackmuss, and G. Heiss, “Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation,” Applied and Environmental Microbiology, vol. 70, no. 5, pp. 2854–2860, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Aleksieva, D. Ivanova, T. Godjevargova, and B. Atanasov, “Degradation of some phenol derivatives by Trichosporon cutaneum R57,” Process Biochemistry, vol. 37, no. 11, pp. 1215–1219, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Yi, W.-Q. Zhuang, B. Wu, S. T.-L. Tay, and J.-H. Tay, “Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor,” Environmental Science and Technology, vol. 40, no. 7, pp. 2396–2401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. C. Tomei, M. C. Annesini, R. Luberti, G. Cento, and A. Senia, “Kinetics of 4-nitrophenol biodegradation in a sequencing batch reactor,” Water Research, vol. 37, no. 16, pp. 3803–3814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. V. M. Boddu, D. S. Viswanath, and S. W. Maloney, “Synthesis and characterization of coralline magnesium oxide nanoparticles,” Journal of the American Ceramic Society, vol. 91, no. 5, pp. 1718–1720, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Liu, H. Liu, J. Ma, and X. Wang, “Comparison of degradation mechanism of electrochemical oxidation of di- and tri-nitrophenols on Bi-doped lead dioxide electrodeeffect of the molecular structure,” Applied Catalysis B, vol. 91, no. 1-2, pp. 284–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. O. V. Makarova, T. Rajh, M. C. Thurnauer, A. Martin, P. A. Kemme, and D. Cropek, “Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene,” Environmental Science and Technology, vol. 34, no. 22, pp. 4797–4803, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Yazid, R. Adnan, and M. A. Farrukh, “Gold nanoparticles supported on titania for the reduction of p-nitrophenol,” Indian Journal of Chemistry A, vol. 52, no. 2, pp. 184–191, 2013. View at Google Scholar
  33. Y. Paukku, A. Michalkova, and J. Leszczynski, “Adsorption of dimethyl methylphosphonate and trimethyl phosphate on calcium oxide: an ab initio study,” Structural Chemistry, vol. 19, no. 2, pp. 307–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Farrukh, P. Tan, and R. Adnan, “Influence of reaction parameters on the synthesis of surfactant-assisted tin oxide nanoparticles,” Turkish Journal of Chemistry, vol. 36, no. 2, pp. 303–314, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Gnanam and V. Rajendran, “Anionic, cationic and nonionic surfactants-assisted hydrothermal synthesis of tin oxide nanoparticles and their photoluminescence property,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 3, pp. 623–628, 2010. View at Google Scholar · View at Scopus
  36. H.-S. Goh, R. Adnan, and M. A. Farrukh, “ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange,” Turkish Journal of Chemistry, vol. 35, no. 3, pp. 375–391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. M. A. Saron, M. R. Hashim, and M. A. Farrukh, “Stress control in ZnO films on GaN/Al2O3 via wet oxidation of Zn under various temperatures,” Applied Surface Science, vol. 258, no. 13, pp. 5200–5205, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Adnan, N. A. Razana, I. A. Rahman, and M. A. Farrukh, “Synthesis and characterization of high surface area tin oxide nanoparticles via the sol-gel method as a catalyst for the hydrogenation of styrene,” Journal of the Chinese Chemical Society, vol. 57, no. 2, pp. 222–229, 2010. View at Google Scholar · View at Scopus
  39. K. M. A. Saron, M. R. Hashim, and M. A. Farrukh, “Growth of GaN films on silicon (111) by thermal vapor deposition method: optical functions and MSM UV photodetector applications,” Superlattices and Microstructures, vol. 64, pp. 88–97, 2013. View at Publisher · View at Google Scholar
  40. C. Liu, L. Zhang, J. Deng, Q. Mu, H. Dai, and H. He, “Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies,” The Journal of Physical Chemistry C, vol. 112, no. 49, pp. 19248–19256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. H. B. de Aguiar, M. L. Strader, A. G. F. de Beer, and S. Roke, “Surface structure of sodium dodecyl sulfate surfactant and oil at the oil-in-water droplet liquid/liquid interface: a manifestation of a nonequilibrium surface state,” The Journal of Physical Chemistry B, vol. 115, no. 12, pp. 2970–2978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Sverjensky, “Zero-point-of-charge prediction from crystal chemistry and solvation theory,” Geochimica et Cosmochimica Acta, vol. 58, no. 14, pp. 3123–3129, 1994. View at Google Scholar · View at Scopus
  43. M. I. Zaki, H. Knözinger, B. Tesche, and G. A. H. Mekhemer, “Influence of phosphonation and phosphation on surface acid-base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy,” Journal of Colloid and Interface Science, vol. 303, no. 1, pp. 9–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. O. B. Koper, I. Lagadic, A. Volodin, and K. J. Klabunde, “Alkaline-earth oxide nanoparticles obtained by aerogel methods. Characterization and rational for unexpectedly high surface chemical reactivities,” Chemistry of Materials, vol. 9, no. 11, pp. 2468–2480, 1997. View at Google Scholar · View at Scopus
  45. Y. X. Li, H. Li, and K. J. Klabunde, “Destructive adsorption of chlorinated benzenes on ultrafine (Nanoscale) particles of magnesium oxide and calcium oxide,” Environmental Science and Technology, vol. 28, no. 7, pp. 1248–1253, 1994. View at Google Scholar · View at Scopus
  46. J. Hemalatha, T. Prabhakaran, and R. P. Nalini, “A comparative study on particle-fluid interactions in micro and nanofluids of aluminium oxide,” Microfluidics and Nanofluidics, vol. 10, no. 2, pp. 263–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Viswanath and N. Ravishankar, “Interfacial reactions in hydroxyapatite/alumina nanocomposites,” Scripta Materialia, vol. 55, no. 10, pp. 863–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Yu, Q. Ge, W. Fang, and H. Xu, “Influences of calcination temperature on the efficiency of CaO promotion over CaO modified Pt/γ-Al2O3 catalyst,” Applied Catalysis A, vol. 395, no. 1-2, pp. 114–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Koirala, G. K. Reddy, and P. G. Smirniotis, “Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature,” Energy & Fuels, vol. 26, no. 5, pp. 3103–3109, 2012. View at Google Scholar
  50. A. Gaber, A. Y. Abdel-Latief, M. A. Abdel-Rahim, and M. N. Abdel-Salam, “Thermally induced structural changes and optical properties of tin dioxide nanoparticles synthesized by a conventional precipitation method,” Materials Science in Semiconductor Processing, vol. 16, no. 6, pp. 1784–1790, 2013. View at Google Scholar
  51. E. Filippo, D. Manno, A. R. de Bartolomeo, and A. Serra, “Single step synthesis of SnO2–SiO2 core-shell microcables,” Journal of Crystal Growth, vol. 330, no. 1, pp. 22–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Mousavi, M. R. Abolhassani, S. M. Hosseini, and S. A. Sebt, “Comparison of electronic and optical properties of the and phases of alumina using density functional theory,” Chinese Journal of Physics, vol. 47, no. 6, pp. 862–873, 2009. View at Google Scholar
  53. V. Pimienta, R. Etchenique, and T. Buhse, “On the origin of electrochemical oscillations in the picric acid/CTAB two-phase system,” The Journal of Physical Chemistry A, vol. 105, no. 44, pp. 10037–10044, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Ksibi, A. Zemzemi, and R. Boukchina, “Photocatalytic degradability of substituted phenols over UV irradiated TiO2,” Journal of Photochemistry and Photobiology A, vol. 159, no. 1, pp. 61–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Li, H. Qiao, Y. Du et al., “Electrospinning synthesis and photocatalytic activity of mesoporous TiO2 nanofibers,” The Scientific World Journal, vol. 2012, Article ID 154939, 7 pages, 2012. View at Publisher · View at Google Scholar
  56. M. A. Farrukh, B.-T. Heng, and R. Adnan, “Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods,” Turkish Journal of Chemistry, vol. 34, no. 4, pp. 537–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Iyota and R. Krastev, “Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate,” Colloid and Polymer Science, vol. 287, no. 4, pp. 425–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. NIOSH Manual of Analytical Methods, vol. 4, method no. S228, US Department of Health and Human Services, Public Health Services, 2nd edition, 1978.