Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 684860, 7 pages
http://dx.doi.org/10.1155/2013/684860
Review Article

The Ipsilesional Upper Limb Can Be Affected following Stroke

1Stroke Research, Neurology Department, John Hunter Hospital, Hunter New England Local Health District, Locked Bag 1, Hunter Regional Mail Centre, NSW 2310, Australia
2School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
3Hunter Brain Injury Service, Hunter New England Local Health District, Bar Beach, NSW 2300, Australia

Received 20 August 2013; Accepted 17 September 2013

Academic Editors: A. Biegon and F. Gonzalez-Lima

Copyright © 2013 Gemma H. Kitsos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Noskin, J. W. Krakauer, R. M. Lazar et al., “Ipsilateral motor dysfunction from unilateral stroke: implications for the functional neuroanatomy of hemiparesis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 4, pp. 401–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Y. Jung, J. S. Yoon, and B. S. Park, “Recovery of proximal and distal arm weakness in the ipsilateral upper limb after stroke,” NeuroRehabilitation, vol. 17, no. 2, pp. 153–159, 2002. View at Google Scholar · View at Scopus
  3. S. Wetter, J. L. Poole, and K. Y. Haaland, “Functional implications of ipsilesional motor deficits after unilateral stroke,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 4, pp. 776–781, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Laufer, L. Gattenio, E. Parnas, D. Sinai, Y. Sorek, and R. Dickstein, “Time-related changes in motor performance of the upper extremity ipsilateral to the side of the lesion in stroke survivors,” Neurorehabilitation and Neural Repair, vol. 15, no. 3, pp. 167–172, 2001. View at Google Scholar · View at Scopus
  5. C. Chestnut and K. Y. Haaland, “Functional significance of ipsilesional motor deficits after unilateral stroke,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 1, pp. 62–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Desrosiers, D. Bourbonnais, G. Bravo, P.-M. Roy, and M. Guay, “Performance of the “unaffected” upper extremity of elderly stroke patients,” Stroke, vol. 27, no. 9, pp. 1564–1570, 1996. View at Google Scholar · View at Scopus
  7. A. Sunderland, M. P. Bowers, S.-M. Sluman, D. J. Wilcock, and M. E. Ardron, “Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit,” Stroke, vol. 30, no. 5, pp. 949–955, 1999. View at Google Scholar · View at Scopus
  8. S. J. Spaulding, J. J. McPherson, E. Strachota, M. Kuphal, and M. Ramponi, “Jebsen Hand Function Test: performance of the uninvolved hand in hemiplegia and of right-handed, right and left hemiplegic persons,” Archives of Physical Medicine and Rehabilitation, vol. 69, no. 6, pp. 419–422, 1988. View at Google Scholar · View at Scopus
  9. R. H. Jebsen, N. Taylor, R. B. Trieschmann, M. J. Trotter, and L. A. Howard, “An objective and standardized test of hand function,” Archives of Physical Medicine and Rehabilitation, vol. 50, no. 6, pp. 311–319, 1969. View at Google Scholar · View at Scopus
  10. P. H. McCrea, J. J. Eng, and A. J. Hodgson, “Time and magnitude of torque generation is impaired in both arms following stroke,” Muscle and Nerve, vol. 28, no. 1, pp. 46–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. De Groot-Driessen, P. Van De Sande, and C. Van Heugten, “Speed of finger tapping as a predictor of functional outcome after unilateral stroke,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 1, pp. 40–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Morris and F. Van Wijck, “Responses of the less affected arm to bilateral upper limb task training in early rehabilitation after stroke: a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 93, pp. 1129–1137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. Brasil-Neto and A. C. De Lima, “Sensory deficits in the unaffected hand of hemiparetic stroke patients,” Cognitive and Behavioral Neurology, vol. 21, no. 4, pp. 202–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Jebsen, E. R. Griffith, E. W. Long, and R. Fowler, “Function of “normal” hand in stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 52, no. 4, pp. 170–174, 1971. View at Google Scholar · View at Scopus
  15. A. Yelnik, I. Bonan, M. Debray, E. Lo, F. Gelbert, and B. Bussel, “Changes in the execution of a complex manual task after ipsilateral ischemic cerebral hemispheric stroke,” Archives of Physical Medicine and Rehabilitation, vol. 77, no. 8, pp. 806–810, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. K. O. Grice, K. A. Vogel, V. Le, A. Mitchell, S. Muniz, and M. A. Vollmer, “Adult norms for a commercially available nine hole peg test for finger dexterity,” American Journal of Occupational Therapy, vol. 57, no. 5, pp. 570–573, 2003. View at Google Scholar · View at Scopus
  17. D. A. Nowak, C. Grefkes, M. Dafotakis, J. Küst, H. Karbe, and G. R. Fink, “Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke,” European Journal of Neuroscience, vol. 25, no. 10, pp. 3173–3184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. Jones, I. M. Donaldson, and P. J. Parkin, “Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction,” Brain, vol. 112, no. 1, pp. 113–132, 1989. View at Google Scholar · View at Scopus
  19. A. Sunderland, “Recovery of ipsilateral dexterity after stroke,” Stroke, vol. 31, no. 2, pp. 430–433, 2000. View at Google Scholar · View at Scopus
  20. E. Mori and A. Yamadori, “Unilateral hemispheric injury and ipsilateral instinctive grasp reaction,” Archives of Neurology, vol. 42, no. 5, pp. 485–488, 1985. View at Google Scholar · View at Scopus
  21. J. J. Baskett, H. J. Marshall, J. B. Broad, P. H. Owen, and G. Green, “The good side after stroke: ipsilateral sensory-motor function needs careful assessment,” Age and Ageing, vol. 25, no. 3, pp. 239–244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. B. M. Quaney, S. Perera, R. Maletsky, C. W. Luchies, and R. J. Nudo, “Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke,” Neurorehabilitation and Neural Repair, vol. 19, no. 4, pp. 338–349, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K.-C. Lin, C.-Y. Wu, K.-H. Lin, and C.-W. Chang, “Effects of task instructions and target location on reaching kinematics in people with and without cerebrovascular accident: a study of the less-affected limb,” American Journal of Occupational Therapy, vol. 62, no. 4, pp. 456–465, 2008. View at Google Scholar · View at Scopus
  24. S. P. Swinnen, F. Debaere, D. Van Assche, C. Kiekens, and S. M. P. Verschueren, “Coordination of upper and lower limb segments: deficits on the ipsilesional side after unilateral stroke,” Experimental Brain Research, vol. 141, no. 4, pp. 519–529, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Y. Haaland and D. L. Harrington, “Limb-sequencing deficits after left but not right hemisphere damage,” Brain and Cognition, vol. 24, no. 1, pp. 104–122, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Kim, P. S. Pohl, C. W. Luchies, A. P. Stylianou, and Y. Won, “Ipsilateral deficits of targeted movements after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 5, pp. 719–724, 2003. View at Google Scholar · View at Scopus
  27. Y.-H. Kwon, C. S. Kim, and S. H. Jang, “Ipsi-lesional motor deficits in hemiparetic patients with stroke,” NeuroRehabilitation, vol. 22, no. 4, pp. 279–286, 2007. View at Google Scholar · View at Scopus
  28. P. S. Pohl and C. J. Winstein, “Practice effects on the less-affected upper extremity after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 80, no. 6, pp. 668–675, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Sugarman, A. Avni, R. Nathan, A. Weisel-Eichler, and J. Tiran, “Movement in the ipsilesional hand is segmented following unilateral brain damage,” Brain and Cognition, vol. 48, no. 2-3, pp. 579–587, 2002. View at Google Scholar · View at Scopus
  30. C. A. Yarosh, D. S. Hoffman, and P. L. Strick, “Deficits in movements of the wrist ipsilateral to a stroke in hemiparetic subjects,” Journal of Neurophysiology, vol. 92, no. 6, pp. 3276–3285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Kitsos, D. Harris, M. Pollack, and I. J. Hubbard, “Assessments in Australian stroke rehabilitation units: a systematic review of the post-stroke validity of the most frequently used,” Disability and Rehabilitation, vol. 33, no. 25-26, pp. 2620–2632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. W. Stinear and W. D. Byblow, “Rhythmic bilateral movement training modulates corticomotor excitability and enhances upper limb motricity poststroke: a pilot study,” Journal of Clinical Neurophysiology, vol. 21, no. 2, pp. 124–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. U. Ziemann, K. Ishii, A. Borgheresi et al., “Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles,” Journal of Physiology, vol. 518, no. 3, pp. 895–906, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Grefkes and G. R. Fink, “Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches,” Brain, vol. 134, no. 5, pp. 1264–1276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Shimizu, A. Hosaki, T. Hino et al., “Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke,” Brain, vol. 125, no. 8, pp. 1896–1907, 2002. View at Google Scholar · View at Scopus
  36. N. S. Ward and L. G. Cohen, “Mechanisms underlying recovery of motor function after stroke,” Archives of Neurology, vol. 61, no. 12, pp. 1844–1848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. C. M. Stinear, P. A. Barber, P. R. Smale, J. P. Coxon, M. K. Fleming, and W. D. Byblow, “Functional potential in chronic stroke patients depends on corticospinal tract integrity,” Brain, vol. 130, no. 1, pp. 170–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. P. S. Pohl, C. W. Luchies, J. Stoker-Yates, and P. W. Duncan, “Upper extremity control in adults post stroke with mild residual impairment,” Neurorehabilitation and Neural Repair, vol. 14, no. 1, pp. 33–41, 2000. View at Google Scholar · View at Scopus