Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 689235, 6 pages
http://dx.doi.org/10.1155/2013/689235
Research Article

Characterization of Cellulolytic Bacterial Cultures Grown in Different Substrates

1Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
2Department of Animal Production, Faculty of Agriculture, University of Sabha, Sabha, Libya
3Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
4Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, UPM, 43400 Serdang, Malaysia
5Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
6Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia

Received 30 August 2013; Accepted 26 September 2013

Academic Editors: M. Talat and N. Vassilev

Copyright © 2013 Mohamed Idris Alshelmani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Sundu and J. Dingle, “Use of enzymes to improve the nutritional value of palm kernel meal and copra meal,” in Proceedings of the Queensland Poultry Science Symposium, pp. 1–15, Queensland, Australia, 2002.
  2. J. Álvarez-Cervantes, E. M. Hernández-Domínguez, A. Arana-Cuenca, G. Díaz-Godínez, and Y. Mercado-Flores, “Purification and characterization of xylanase SRXL1 from Sporisorium reilianum grown in submerged and solid-state fermentation,” BioResources, vol. 8, pp. 5309–5318, 2013. View at Google Scholar
  3. W. L. Chen, J. B. Liang, M. F. Jahromi, Y. W. Ho, and N. Abdullah, “Optimization of multi-enzyme production by fungi isolated from palm kernel expeller using response surface methodology,” BioResources, vol. 8, pp. 3844–3857, 2013. View at Google Scholar
  4. L. R. S. Moreira and E. X. F. Filho, “An overview of mannan structure and mannan-degrading enzyme systems,” Applied Microbiology and Biotechnology, vol. 79, no. 2, pp. 165–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Saenphoom, J. B. Liang, Y. W. Ho, T. C. Loh, and M. Rosfarizan, “Effect of enzyme treatment on chemical composition and production of reducing sugars in palm (Elaeis guineenis) kernel expeller,” African Journal of Biotechnology, vol. 10, no. 68, pp. 15372–15377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Saenphoom, J. B. Liang, Y. W. Ho, T. C. Loh, and M. Rosfarizan, “Effects of enzyme treated palm kernel expeller on metabolizable energy, growth performance, villus height and digesta viscosity in broiler chickens,” Asian—Australasian Journal of Animal Sciences, vol. 26, pp. 537–544, 2013. View at Google Scholar
  7. A. Pandey, C. R. Soccol, and C. Laroche, Current Development in Solid State Fermentation, Springer, Asiatech, New Delhi, India, 2008.
  8. I. Sindhu, S. Chhibber, N. Capalash, and P. Sharma, “Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp,” Current Microbiology, vol. 53, no. 2, pp. 167–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Archana and T. Satyanarayana, “Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation,” Enzyme and Microbial Technology, vol. 21, no. 1, pp. 12–17, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Battan, J. Sharma, and R. C. Kuhad, “High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solid-state fermentation,” World Journal of Microbiology and Biotechnology, vol. 22, no. 12, pp. 1281–1287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gessesse and G. Mamo, “High-level xylanase production by an alkaliphilic Bacillus sp. by using solid-state fermentation,” Enzyme and Microbial Technology, vol. 25, no. 1-2, pp. 68–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Nigam and A. Pandey, “Solid-state fermentation technology for bioconversion of biomass and agricultural residues,” in Biotechnology for Agro-Industrial Residues Utilisation, P. Nigam and A. Pandey, Eds., pp. 197–221, Springer, Dordrecht, The Netherlands, 2009. View at Google Scholar
  13. P. P. Kheng and I. C. Omar, “Xylanase production by a local, fungal isolate, Aspergillus niger USM A1 via olid state fermentation using palm kernel cake (PKC) as substrate,” The Songklanakarin Journal of Science and Technology, vol. 27, pp. 325–336, 2005. View at Google Scholar
  14. B. K. Lonsane, G. Saucedo-Castaneda, M. Raimbault et al., “Scale-up strategies for solid state fermentation systems,” Process Biochemistry, vol. 27, no. 5, pp. 259–273, 1992. View at Google Scholar · View at Scopus
  15. A. Araujo and O. W. Ward, “Extracellular mannanases and galactanases from selected fungi,” Journal of Industrial Microbiology, vol. 6, no. 3, pp. 171–178, 1990. View at Google Scholar · View at Scopus
  16. M. J. Bailey, P. Biely, and K. Poutanen, “Interlaboratory testing of methods for assay of xylanase activity,” Journal of Biotechnology, vol. 23, no. 3, pp. 257–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959. View at Google Scholar · View at Scopus
  18. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  19. SAS, Statistical Analytical System, SAS Institute, Cary, NC, USA, 2003.
  20. S. M. Jones, J. S. van Dyk, and B. I. Pletschke, “Bacillus Subtilis SJ01 produces hemicellulose degrading multi-enzyme complexes,” BioResources, vol. 7, no. 1, pp. 1294–1309, 2012. View at Google Scholar · View at Scopus
  21. J. S. van Dyk, M. Sakka, K. Sakka, and B. I. Pletschke, “The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex,” Enzyme and Microbial Technology, vol. 45, no. 5, pp. 372–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. E. M. Mabrouk and A. M. D. El Ahwany, “Production of β-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels,” African Journal of Biotechnology, vol. 7, no. 8, pp. 1123–1128, 2008. View at Google Scholar · View at Scopus
  23. P. Pason, K. L. Kyu, and K. Ratanakhanokchai, “Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides,” Applied and Environmental Microbiology, vol. 72, no. 4, pp. 2483–2490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Pason, A. Kosugi, R. Waeonukul et al., “Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6,” Applied Microbiology and Biotechnology, vol. 85, no. 3, pp. 573–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-K. Jung, J.-H. Hong, S.-C. Park, B.-K. Park, D.-H. Nam, and S.-D. Kim, “Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115,” Biotechnology and Bioprocess Engineering, vol. 12, no. 6, pp. 713–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Sudo, M. Sakka, T. Kimura, K. Ratanakhanokchai, and K. Sakka, “Characterization of Paenibacillus curdlanolyticus intracellular xylanase xyn10B encoded by the xyn10B gene,” Bioscience, Biotechnology and Biochemistry, vol. 74, no. 11, pp. 2358–2360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. N. Niladevi, R. K. Sukumaran, and P. Prema, “Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation,” Journal of Industrial Microbiology and Biotechnology, vol. 34, no. 10, pp. 665–674, 2007. View at Publisher · View at Google Scholar · View at Scopus