Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 723645, 17 pages
http://dx.doi.org/10.1155/2013/723645
Research Article

Construction of a WMR for Trajectory Tracking Control: Experimental Results

1Instituto Politécnico Nacional, CIDETEC, Área de Mecatrónica, Unidad Profesional Adolfo López Mateos, 07700 México, DF, Mexico
2Instituto Politécnico Nacional, UPIICSA, Sección de Estudios de Posgrado e Investigación, 08400 México, DF, Mexico
3Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico Matemáticas, 72001 Puebla, PUE, Mexico
4Instituto Tecnológico de Culiacán, Departamento de Metal-Mecánica, 80220 Culiacán, SIN, Mexico
5Universidad Privada del Valle, Facultad de Informática y Electrónica, Tiquipaya, CBBA, Bolivia
6Centro Nacional de Actualización Docente, Área de Máquinas, 13420 México, DF, Mexico

Received 19 April 2013; Accepted 2 June 2013

Academic Editors: W. Chen and D. K. Liang Ou

Copyright © 2013 R. Silva-Ortigoza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Silva-Ortigoza, M. Marcelino-Aranda, G. Silva-Ortigoza et al., “Wheeled mobile robots: a review,” IEEE Latin America Transactions, vol. 10, no. 6, pp. 2209–2217, 2012. View at Google Scholar
  2. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning. Steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. R. W. Brockett, “Asymptotic stability and feedback stabilization,” in Differential Geometric Control Theory, R. W. Brockett, R. S. Millmann, and H. J. Sussmann, Eds., pp. 181–191, Birkhauser, Boston, Mass, USA, 1983. View at Google Scholar
  4. C. Canudas de Wit and O. J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Transactions on Automatic Control, vol. 37, no. 11, pp. 1791–1797, 1992. View at Google Scholar
  5. C. Samson, “Velocity and torque feedback control of a nonholonomic cart,” in Advanced Robot Control, C. Canudas de Wit, Ed., vol. 162 of Lecture Notes in Control and Information Sciences, pp. 125–151, Springer, New York, NY, USA, 1991. View at Google Scholar
  6. C. Samson, “Control of chained systems application to path following and time-varying point-stabilization of mobile robots,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 64–77, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-M. Coron, “Global asymptotic stabilization for controllable systems without drift,” Mathematics of Control, Signals, and Systems, vol. 5, no. 3, pp. 295–312, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Coron and B. d'Andrea-Novel, “Smooth stabilizing time-varying control laws for a class of nonlinear systems. Application to mobile robots,” in Proceedings of the IFAC Symposium on Nonlinear Control Systems Design, pp. 413–418, June 1992. View at Scopus
  9. J.-B. Pomet, “Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift,” Systems and Control Letters, vol. 18, no. 2, pp. 147–158, 1992. View at Google Scholar · View at Scopus
  10. A. W. Divelbiss and J. T. Wen, “Trajectory tracking control of a car-trailer system,” IEEE Transactions on Control Systems Technology, vol. 5, no. 3, pp. 269–278, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Aranda-Bricaire, T. Salgado-Jiménez, and M. Velasco-Villa, Control No Lineal Discontinuo De Un Robot Móvil, Computación y Sistemas (Special edition), 2002.
  12. H. Sira-Ramírez and S. K. Agrawal, Differentially Flat Systems, Marcel Dekker, New York, NY, USA, 2004.
  13. M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems: introductory theory and examples,” International Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995. View at Google Scholar · View at Scopus
  14. J. A. Chacal B. and H. Sira-Ramirez, “On the sliding mode control of wheeled mobile robots,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1938–1943, October 1994. View at Scopus
  15. J.-M. Yang, I.-H. Choi, and J.-H. Kim, “Sliding mode control of a nonholonomic wheeled mobile robot for trajectory tracking,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2983–2988, May 1998. View at Scopus
  16. R. Silva-Ortigoza, G. Silva-Ortigoza, V. M. Hernández-Guzmán, V. R. Barrientos-Sotelo, J. M. Albarrán-Jiménez, and V. M. Silva-García, “Trajectory tracking in a mobile robot without using velocity measurements for control of wheels,” IEEE Latin America Transactions, vol. 6, no. 7, pp. 598–607, 2008. View at Google Scholar
  17. J. L. Avendaño-Juárez, V. M. Hernández-Guzmán, and R. Silva-Ortigoza, “Velocity and current inner loops in a wheeled mobile robot,” Advanced Robotics, vol. 24, no. 8-9, pp. 1385–1404, 2010. View at Google Scholar
  18. M. Nystrom and M. Norrlof, “Path generation for industrial robots,” Tech. Rep. LiTH-ISY-R-2529, Department of Electrical Engineering; Linkoping University, 2003. View at Google Scholar
  19. L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic Machines and Robots, Springer, 2008.
  20. B. Tondu and S. A. Bazaz, “Three-cubic method: an optimal online robot joint trajectory generator under velocity, acceleration, and wandering constraints,” International Journal of Robotics Research, vol. 18, no. 9, pp. 893–901, 1999. View at Google Scholar · View at Scopus
  21. R. L. Burden, J. D. Faires, and Numerical Analysis, Brooks-Cole, Boston, Mass, USA, 9th edition, 2010.
  22. K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, NY, USA, 2nd edition, 1989.
  23. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, McGraw-Hill, New York, NY, USA, 2nd edition, 1989.
  24. T. H. Lee, H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “A fast path planning-and-tracking control for wheeled mobile robots,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '01), pp. 1736–1741, May 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. H. Lee, H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “A practical fuzzy logic controller for the path tracking of wheeled mobile robots,” IEEE Control Systems Magazine, vol. 23, no. 2, pp. 60–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Lepetic, G. Klnacar, I. Skrjanc, D. Matko, and B. Potocnik, “Path planning and path tracking for nonholonomic robots,” in Mobile Robots: New Research, J. X. Liu, Ed., pp. 345–368, Nova Science, 2005. View at Google Scholar
  27. “MicroMo Electronics, Faulhaber Group,” http://www.micromo.com.