Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 724609, 11 pages
http://dx.doi.org/10.1155/2013/724609
Research Article

Genetic Diversity and Population Genetics of Mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America

1Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Guaymas, Apartado Postal 284, 85480 Guaymas, SON, Mexico
2Department of Biology, University of Maryland, College Park, MD 20742, USA
3Instituto de Seguridad y Servicios Sociales de Los Trabajadores del Estado de Sonora (ISSSTESON), 83000 Hermosillo, SON, Mexico
4Laboratorio Estatal de Salud Publica, Zona Edificios Federales, Col. Las Quintas, 83260 Hermosillo, SON, Mexico
5Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
6Laboratorio Nacional de Genómica de Biodiversidad-CINVESTAV, 36821 Irapuato, GTO, Mexico

Received 13 August 2013; Accepted 10 September 2013

Academic Editors: H. A. Lessios and R. Rivas

Copyright © 2013 Edward Pfeiler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Rios-Ibarra, B. J. Blitvich, J. Farfan-Ale et al., “Fatal human case of West Nile virus disease, Mexico, 2009,” Emerging Infectious Diseases, vol. 16, no. 4, pp. 741–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Elizondo-Quiroga, C. T. Davis, I. Fernandez-Salas et al., “West nile virus isolation in human and mosquitoes, Mexico,” Emerging Infectious Diseases, vol. 11, no. 9, pp. 1449–1452, 2005. View at Google Scholar · View at Scopus
  3. R. E. Harbach, “The Culicidae (Diptera): a review of taxonomy, classification and phylogeny,” Zootaxa, vol. 1668, pp. 591–638, 2007. View at Google Scholar · View at Scopus
  4. R. E. Harbach, “Culex classification, Mosquito taxonomic inventory,” 2013, http://mosquito-taxonomic-inventory.info/. View at Google Scholar
  5. A. Farajollahi, D. M. Fonseca, L. D. Kramer, and A. M. Kilpatrick, “‘Bird biting’ mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology,” Infection, Genetics and Evolution, vol. 11, no. 7, pp. 1577–1585, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. Harbach, “Culex pipiens: species versus species complex—taxonomic history and perspective,” Journal of the American Mosquito Control Association, vol. 28, supplement 4, pp. 10–23, 2012. View at Google Scholar
  7. L. Kothera, M. S. Godsey Jr., M. S. Doyle, and H. M. Savage, “Characterization of Culex pipiens complex (Diptera: Culicidae) populations in Colorado, USA using microsatellites,” PLoS ONE, vol. 7, no. 10, Article ID e47602, 2012. View at Google Scholar
  8. S. Huang, G. Molaei, and T. G. Andreadis, “Reexamination of Culex pipiens hybridization zone in the eastern United States by ribosomal DNA-based single nucleotide polymorphism markers,” American Journal of Tropical Medicine and Hygiene, vol. 85, no. 3, pp. 434–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ratnasingham and P. D. N. Hebert, “BOLD: the Barcode of life data system,” Molecular Ecology Notes, vol. 7, no. 3, pp. 355–364, 2007, http://www.barcodinglife.org/. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. O. Sanogo, C. Kim, R. Lampman, and R. J. Novak, “A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis encephalitis viruses in North America,” American Journal of Tropical Medicine and Hygiene, vol. 77, no. 1, pp. 58–66, 2007. View at Google Scholar · View at Scopus
  11. A. Cywinska, F. F. Hunter, and P. D. N. Hebert, “Identifying Canadian mosquito species through DNA barcodes,” Medical and Veterinary Entomology, vol. 20, no. 4, pp. 413–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Wang, C. Li, X. Guo et al., “Identifying the main mosquito species in China based on DNA barcoding,” PLoS ONE, vol. 7, no. 10, Article ID e47051, 2012. View at Google Scholar
  13. O. Folmer, M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek, “DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates,” Molecular Marine Biology and Biotechnology, vol. 3, no. 5, pp. 294–299, 1994. View at Google Scholar · View at Scopus
  14. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Fonseca, C. T. Atkinson, and R. C. Fleischer, “Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii,” Molecular Ecology, vol. 7, no. 11, pp. 1617–1619, 1998. View at Google Scholar · View at Scopus
  16. D. Dieringer and C. Schlötterer, “Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets,” Molecular Ecology Notes, vol. 3, no. 1, pp. 167–169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Excoffier and H. E. L. Lischer, “Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows,” Molecular Ecology Resources, vol. 10, no. 3, pp. 564–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Guo and E. A. Thompson, “Performing the exact test of Hardy-Weinberg proportion for multiple alleles,” Biometrics, vol. 48, no. 2, pp. 361–372, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Pfeiler, T. Erez, L. A. Hurtado, and T. A. Markow, “Genetic differentiation and demographic history in Drosophila pachea from the Sonoran Desert,” Hereditas, vol. 144, no. 2, pp. 63–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences,” Journal of Molecular Evolution, vol. 16, no. 2, pp. 111–120, 1980. View at Google Scholar · View at Scopus
  21. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Librado and J. Rozas, “DnaSP v5: a software for comprehensive analysis of DNA polymorphism data,” Bioinformatics, vol. 25, no. 11, pp. 1451–1452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Tajima, “Statistical method for testing the neutral mutation hypothesis by DNA polymorphism,” Genetics, vol. 123, no. 3, pp. 585–595, 1989. View at Google Scholar · View at Scopus
  24. Y. Fu, “Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection,” Genetics, vol. 147, no. 2, pp. 915–925, 1997. View at Google Scholar · View at Scopus
  25. S. E. Ramos-Onsins and J. Rozas, “Statistical properties of new neutrality tests against population growth,” Molecular Biology and Evolution, vol. 19, no. 12, pp. 2092–2100, 2002. View at Google Scholar · View at Scopus
  26. M. Clement, D. Posada, and K. A. Crandall, “TCS: a computer program to estimate gene genealogies,” Molecular Ecology, vol. 9, no. 10, pp. 1657–1659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. K. R. Reidenbach, S. Cook, M. A. Bertone, R. E. Harbach, B. M. Wiegmann, and N. J. Besansky, “Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology,” BMC Evolutionary Biology, vol. 9, no. 1, article 298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, pp. 783–791, 1985. View at Google Scholar
  29. J. P. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001. View at Google Scholar · View at Scopus
  30. D. Posada, “jModelTest: phylogenetic model averaging,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1253–1256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Excoffier, P. E. Smouse, and J. M. Quattro, “Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data,” Genetics, vol. 131, no. 2, pp. 479–491, 1992. View at Google Scholar · View at Scopus
  32. W. R. Rice, “Analyzing tables of statistical tests,” Evolution, vol. 43, pp. 223–225, 1989. View at Google Scholar
  33. A. V. Z. Brower, “Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 14, pp. 6491–6495, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. A. R. Rogers and H. Harpending, “Population growth makes waves in the distribution of pairwise genetic differences,” Molecular Biology and Evolution, vol. 9, no. 3, pp. 552–569, 1992. View at Google Scholar · View at Scopus
  35. H. C. Harpending, “Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution,” Human Biology, vol. 66, no. 4, pp. 591–600, 1994. View at Google Scholar · View at Scopus
  36. A. J. Drummond, A. Rambaut, B. Shapiro, and O. G. Pybus, “Bayesian coalescent inference of past population dynamics from molecular sequences,” Molecular Biology and Evolution, vol. 22, no. 5, pp. 1185–1192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. K. Kuhner, J. Yamato, and J. Felsenstein, “Maximum likelihood estimation of population growth rates based on the coalescent,” Genetics, vol. 149, no. 1, pp. 429–434, 1998. View at Google Scholar · View at Scopus
  38. E. Pfeiler, B. G. Bitler, S. Castrezana, L. M. Matzkin, and T. A. Markow, “Genetic diversification and demographic history of the cactophilic pseudoscorpion Dinocheirus arizonensis from the Sonoran Desert,” Molecular Phylogenetics and Evolution, vol. 52, no. 1, pp. 133–141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Song, J. E. Buhay, M. F. Whiting, and K. A. Crandall, “Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13486–13491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Huang, G. Molaei, and T. G. Andreadis, “Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by using microsatellite analysis,” American Journal of Tropical Medicine and Hygiene, vol. 79, no. 4, pp. 518–527, 2008. View at Google Scholar · View at Scopus
  41. L. A. Hurtado, T. Erez, S. Castrezana, and T. A. Markow, “Contrasting population genetic patterns and evolutionary histories among sympatric Sonoran Desert cactophilic Drosophila,” Molecular Ecology, vol. 13, no. 6, pp. 1365–1375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. L. K. Reed, M. Nyboer, and T. A. Markow, “Evolutionary relationships of Drosophila mojavensis geographic host races and their sister species Drosophila arizonae,” Molecular Ecology, vol. 16, no. 5, pp. 1007–1022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Pfeiler, M. P. Richmond, J. R. Riesgo-Escovar, A. A. Tellez-Garcia, S. Johnson, and T. A. Markow, “Genetic differentiation, speciation and phylogeography of cactus flies (Diptera: Neriidae: Odontoloxozus) from Mexico and southwestern USA,” Biological Journal of the Linnean Society, vol. 110, no. 2, pp. 245–256, 2013. View at Google Scholar
  44. W. K. Reisen, M. M. Milby, and R. P. Meyer, “Population dynamics of adult Culex mosquitoes (Diptera: Culicidae) along the Kern River, Kern County, California, in 1990,” Journal of Medical Entomology, vol. 29, no. 3, pp. 531–543, 1992. View at Google Scholar · View at Scopus
  45. H. H. Ross, “The colonization of temperate North America by mosquitoes and man,” Mosquito News, vol. 24, pp. 103–118, 1964. View at Google Scholar
  46. A. Diaz-Badillo, B. G. Bolling, G. Perez-Ramirez et al., “The distribution of potential West Nile virus vectors, Culex pipiens pipiens and Culex pipiens quinquefasciatus (Diptera: Culicidae), in Mexico City,” Parasites and Vectors, vol. 4, no. 1, article 70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Ruiz-Lopez, R. C. Wilkerson, J. E. Conn et al., “DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors,” Parasites & Vectors, vol. 5, article 44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Demari-Silva, F. T. Vesgueiro, M. A. M. Sallum, and M. T. Marrelli, “Taxonomic and Phylogenetic relationships between species of the genus Culex (Diptera: Culicidae) from Brazil inferred from the cytochrome c oxidase I mitochondrial gene,” Journal of Medical Entomology, vol. 48, no. 2, pp. 272–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Vargas, “Especies y distribución de mosquitos mexicanos no anofelinos (Insecta Diptera),” Revista del Instituto de Salubridad y Enfermedades Tropicales, vol. 16, no. 1, pp. 19–36, 1956. View at Google Scholar · View at Scopus
  50. E. Pfeiler and T. A. Markow, “Phylogeography of the cactophilic Drosophila and other arthropods associated with cactus necroses in the Sonoran Desert,” Insects, vol. 2, pp. 218–231, 2011. View at Google Scholar
  51. C. M. Barker, B. G. Bolling, W. C. Black IV, C. G. Moore, and L. Eisen, “Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in Eastern Colorado,” Journal of Vector Ecology, vol. 34, no. 2, pp. 276–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Venkatesan and J. L. Rasgon, “Population genetic data suggest a role for mosquito-mediated dispersal of West Nile virus across the western United States,” Molecular Ecology, vol. 19, no. 8, pp. 1573–1584, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Venkatesan, C. J. Westbrook, M. C. Hauer, and J. L. Rasgon, “Evidence for a population expansion in the West Nile virus vector Culex tarsalis,” Molecular Biology and Evolution, vol. 24, no. 5, pp. 1208–1218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Schenekar and S. Weiss, “High rate of calculation errors in mismatch distribution analysis results in numerous false inferences of biological importance,” Heredity, vol. 107, no. 6, pp. 511–512, 2011. View at Publisher · View at Google Scholar · View at Scopus