Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 738260, 11 pages
http://dx.doi.org/10.1155/2013/738260
Research Article

Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-732, Republic of Korea

Received 27 May 2013; Accepted 6 August 2013

Academic Editors: F. Berto and H. Zhang

Copyright © 2013 Sung Hwan Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-F. Tao, C.-L. Liu, J.-J. Gu, and L.-C. Shen, “Improvements to the measurement of electrically controlled hydraulic pumps' flow/pressure characteristics,” Measurement Science and Technology, vol. 22, no. 12, Article ID 125106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. K. B. Khalil, V. Yurkevich, J. Svoboda, and R. B. Bhat, “Implementation of single feedback control loop for constant power regulated swash plate axial piston pumps,” International Journal of Fluid Power, vol. 3, no. 3, pp. 27–36, 2002. View at Google Scholar
  3. M. K. Bahr Khalil, J. Svoboda, and R. B. Bhat, “Modeling of swash plate axial piston pumps with conical cylinder blocks,” Journal of Mechanical Design, Transactions of the ASME, vol. 126, no. 1, pp. 196–200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. S. Jung, H. E. Kim, and D. S. Kang, “Multi-function control of hydraulic variable displacement pump with EPPR valve,” Transactions of KASE, vol. 14, no. 6, pp. 160–170, 2006. View at Google Scholar
  5. S. A. Imagine, AMESim (Advanced Modeling Environment for Simulation of Engineering System) 4. 2 User Manual, Roanne, 2005.
  6. J. Jin, K. L. Xing, and H. B. Fan, “Research of electro-hydraulic proportional variable displacement piston pump using fuzzy logic control,” Advanced Materials Research, vol. 655, pp. 1179–1188, 2013. View at Google Scholar
  7. S. H. Cho and W. S. Kim, “Study on hydraulic control characteristics of a swashplate type axial piston pump-regulator system by linearization analysis,” ATransactions of the KSME, vol. 24, no. 10, pp. 2535–2542, 2000. View at Google Scholar
  8. J. K. Kim, “Simulation on hydraulic control characteristics of regulator system in bent-axis type piston pump,” KSTLE International Journal, vol. 1, no. 2, pp. 101–106, 2000. View at Google Scholar
  9. S.-H. Park, J.-M. Lee, and J.-S. Kim, “Robust control of the pressure in a control-cylinder with direct drive valve for the variable displacement axial piston pump,” Proceedings of the Institution of Mechanical Engineers, vol. 223, no. 4, pp. 455–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Gad, M. Galal Rabie, and R. M. El-Taher, “Prediction and improvement of steady-state performance of a power controlled axial piston pump,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 3, pp. 443–451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Ivantysyn and M. Ivantysynova, Hydrostatic Pumps and Motors: Principle, Design, Performance, Modeling, Analysis, Control and Testing, Akadenia Books International, New Delhi, India, 2001.
  12. G. Zeiger and A. Akers, “Torque on the Swashplate of an Axial Piston Pump,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 107, no. 3, pp. 220–226, 1985. View at Google Scholar · View at Scopus
  13. S. J. Lin and A. Akers, “Optimal control theory applied to pressure-controlled axial piston pump design,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 112, no. 3, pp. 475–481, 1990. View at Google Scholar · View at Scopus