Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 767482, 20 pages
http://dx.doi.org/10.1155/2013/767482
Review Article

A Review of the Mechanism of Injury and Treatment Approaches for Illness Resulting from Exposure to Water-Damaged Buildings, Mold, and Mycotoxins

Environmental Medicine, 304 W. Los Olivos Street, Santa Barbara, CA 93105, USA

Received 15 January 2013; Accepted 10 February 2013

Academic Editors: O. Aruoma, P. Maček, and J. B.T. Rocha

Copyright © 2013 Janette Hope. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Commonwealth of Massachusetts, “Special Legislative Committee on Indoor Air Pollution, Indoor Air Pollution in Massachusetts,” April 1989.
  2. M. McMahon, S. Hope, J. Thrasher, J. Rea, W. Vinitisky, and A. Gray, “Global indoor health network common toxins in our homes, schools and workplaces,” December 2013.
  3. W. J. Rea, Y. Pan, and B. Griffiths, “The treatment of patients with mycotoxin-induced disease,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 711–714, 2009. View at Publisher · View at Google Scholar
  4. E. Rosen and J. Heseltine, “WHO guidelines for indoor air quality: dampness and mould,” WHO Report, 2009. View at Google Scholar
  5. D. I. Spaces, “Damp indoor apaces,” Institute of Medicine Report, May 2004. View at Google Scholar
  6. W. J. Fisk, Q. Lei-Gomez, and M. J. Mendell, “Meta-analyses of the associations of respiratory health effects with dampness and mold in homes,” Indoor Air, vol. 17, no. 4, pp. 284–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Mudarri and W. J. Fisk, “Public health and economic impact of dampness and mold,” Indoor Air, vol. 17, no. 3, pp. 226–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. K. Jaakkola, B. F. Hwang, and N. Jaakkola, “Home dampness and molds, parental atopy, and asthma in childhood: a six-year population-based cohort study,” Environmental Health Perspectives, vol. 113, no. 3, pp. 357–361, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Karvala, H. Nordman, R. Luukkonen et al., “Occupational rhinitis in damp and moldy workplaces,” American Journal of Rhinology, vol. 22, no. 5, pp. 457–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Karvala, E. Toskala, R. Luukkonen, S. Lappalainen, J. Uitti, and H. Nordman, “New-onset adult asthma in relation to damp and moldy workplaces,” International Archives of Occupational and Environmental Health, vol. 83, no. 8, pp. 855–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. L. Brasel, J. M. Martin, C. G. Carriker, S. C. Wilson, and D. C. Straus, “Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment,” Applied and Environmental Microbiology, vol. 71, no. 11, pp. 7376–7388, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. C. Straus and S. C. Wilson, “Respirable trichothecene mycotoxins can be demonstrated in the air of Stachybotrys chartarum-contaminated buildings,” Journal of Allergy and Clinical Immunology, vol. 118, no. 3, p. 760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. D. Thrasher, M. R. Gray, K. H. Kilburn, D. P. Dennis, and A. Yu, “A water-damaged home and health of occupants: a case study,” Journal of Environmental and Public Health, vol. 2012, Article ID 312836, 10 pages, 2012. View at Publisher · View at Google Scholar
  14. J. L. Richard, R. D. Plattner, J. May, and S. L. Liska, “The occurrence of Ochratoxin A in dust collected from a problem household,” Mycopathologia, vol. 146, no. 2, pp. 99–103, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. Hooper, V. E. Bolton, F. T. Guilford, and D. C. Straus, “Mycotoxin detection in human samples from patients exposed to environmental molds,” International Journal of Molecular Sciences, vol. 10, no. 4, pp. 1465–1475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. G. Hooper, “Personal Communication,” January 2013.
  17. S. Genuis, “Personal Communication,” October 2013.
  18. T. L. Brasel, A. W. Campbell, R. E. Demers et al., “Detection of trichothecene mycotoxins in sera from individuals exposed to Stachybotrys chartarum in indoor environments,” Archives of Environmental Health, vol. 59, no. 6, pp. 317–323, 2004. View at Google Scholar · View at Scopus
  19. M. J. Hodgson, P. Morey, W. Y. Leung et al., “Building-associated pulmonary disease from exposure to Stachybotrys chartarum and Aspergillus versicolor,” Journal of Occupational and Environmental Medicine, vol. 40, no. 3, pp. 241–249, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Engelhart, A. Loock, D. Skutlarek et al., “Occurrence of toxigenic Aspergillus versicolor isolates and sterigmatocystin in carpet dust from damp indoor environments,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3886–3890, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Liu, Y. Wang, J. Cui et al., “Ochratoxin A induces oxidative DNA damage and G1 phase arrest in human peripheral blood mononuclear cells in vitro,” Toxicology Letters, vol. 211, no. 2, pp. 164–171, 2012. View at Publisher · View at Google Scholar
  22. K. Doi and K. Uetsuka, “Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways,” International Journal of Molecular Sciences, vol. 12, no. 8, pp. 5213–5237, 2011. View at Publisher · View at Google Scholar
  23. A. Bouslimi, Z. Ouannes, E. E. Golli, C. Bouaziz, W. Hassen, and H. Bacha, “Cytotoxicity and oxidative damage in kidney cells exposed to the mycotoxins Ochratoxin A and citrinin: individual and combined effects,” Toxicology Mechanisms and Methods, vol. 18, no. 4, pp. 341–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Islam, C. J. Amuzie, J. R. Harkema, and J. J. Pestka, “Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin A: kinetics and potentiation by bacterial lipopolysaccharide coexposure,” Toxicological Sciences, vol. 98, no. 2, pp. 526–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J.-H. Park, J. M. Cox-Ganser, K. Kreiss, S. K. White, and C. Y. Rao, “Hydrophilic fungi and ergosterol associated with respiratory illness in a water-damaged building,” Environmental Health Perspectives, vol. 116, no. 1, pp. 45–50, 2008. View at Google Scholar · View at Scopus
  26. J. Jussila, H. Komulainen, V. M. Kosma, A. Nevalainen, J. Pelkonen, and M. R. Hirvonen, “Spores of Aspergillus versicolor isolated from indoor air of a moisture-damaged building provoke acute inflammation in mouse lungs,” Inhalation Toxicology, vol. 14, no. 12, pp. 1261–1277, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. B. I. Agag, “Mycotoxins in foods and feeds,” Assiut University Bulletin for Environmental Researches, vol. 7, no. 1, 2004. View at Google Scholar
  28. L. Alpsoy and M. E. Yalvac, “Key roles of vitamins A, C, and E in aflatoxin B1-induced oxidative stress,” Vitamins and Hormones, vol. 86, pp. 287–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. a Klich, “Health effects of Aspergillus in food and air,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 657–667, 2009. View at Publisher · View at Google Scholar
  30. I. Baudrimont, R. Ahouandjivo, and E. E. Creppy, “Prevention of lipid peroxidation induced by Ochratoxin A in Vero cells in culture by several agents,” Chemico-Biological Interactions, vol. 104, no. 1, pp. 29–40, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Sava, A. Velasquez, S. Song, and J. Sanchez-Ramos, “Adult hippocampal neural stem/progenitor cells in vitro are vulnerable to the mycotoxin ochratoxin-A,” Toxicological Sciences, vol. 98, no. 1, pp. 187–197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. H. A. Clark and S. M. Snedeker, “Ochratoxin A: its cancer risk and potential for exposure,” Journal of Toxicology and Environmental Health Part B, vol. 9, no. 3, pp. 265–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Desalegn, S. Nanayakkara, K. H. Harada et al., “Mycotoxin detection in urine samples from patients with chronic kidney disease of uncertain etiology in Sri Lanka,” Bulletin of Environmental Contamination and Toxicology, vol. 87, no. 1, pp. 6–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. E. E. Creppy, I. Baudrimont, and A. M. Betbeder, “Prevention of nephrotoxicity of Ochratoxin A, a food contaminant,” Toxicology Letters, vol. 82-83, pp. 869–877, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Hope and B. E. Hope, “A review of the diagnosis and treatment of Ochratoxin A inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis,” Journal of Environmental and Public Health, vol. 2012, Article ID 835059, 10 pages, 2012. View at Publisher · View at Google Scholar
  36. O. Rocha, K. Ansari, and F. M. Doohan, “Effects of trichothecene mycotoxins on eukaryotic cells: a review,” Food Additives and Contaminants, vol. 22, no. 4, pp. 369–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Zajtchuk, “Medical aspects,” in Medical Aspects of Chemical and Biological Warfare, Office of The Surgeon General at TMM Publications, Washington, DC, 1997. View at Google Scholar
  38. E. Karunasena, M. D. Larrañaga, J. S. Simoni, D. R. Douglas, and D. C. Straus, “Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment,” Mycopathologia, vol. 170, no. 6, pp. 377–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. D. Thrasher, D. Ph, K. Kilburn, and N. Immers, “Indoor environment resulting from water intrusion, part 1,” November, 2006.
  40. A. England, A. M. Valdes, J. L. Slater-Jefferies et al., “Variants in the genes encoding TNF-α, IL-10, and GSTP1 influence the effect of α-tocopherol on inflammatory cell responses in healthy men,” The American Journal of Clinical Nutrition, vol. 95, no. 6, pp. 1461–1467, 2012. View at Google Scholar
  41. L. Al-Anati and E. Petzinger, “Immunotoxic activity of Ochratoxin A,” Journal of Veterinary Pharmacology and Therapeutics, vol. 29, no. 2, pp. 79–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Montagnoli, F. Fallarino, R. Gaziano et al., “Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism,” Journal of Immunology, vol. 176, no. 3, pp. 1712–1723, 2006. View at Google Scholar · View at Scopus
  43. S. E. Calvano and S. M. Coyle, “Experimental human endotoxemia: a model of the systemic inflammatory response syndrome?” Surgical Infections, vol. 13, no. 5, pp. 293–299, 2012. View at Publisher · View at Google Scholar
  44. P. Kankkunen, J. Rintahaka, A. Aalto et al., “Trichothecene mycotoxins activate inflammatory response in human macrophages,” Journal of Immunology, vol. 182, no. 10, pp. 6418–6425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Y. Rao, M. A. Riggs, G. L. Chew et al., “Characterization of airborne molds, endotoxins, and glucans in homes in New Orleans after hurricanes Katrina and Rita,” Applied and Environmental Microbiology, vol. 73, no. 5, pp. 1630–1634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. C. Seo, T. Reponen, L. Levin, T. Borchelt, and S. A. Grinshpun, “Aerosolization of particulate (1→3)-β-D-glucan from moldy materials,” Applied and Environmental Microbiology, vol. 74, no. 3, pp. 585–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. G. M. Solomon, M. Hjelmroos-Koski, M. Rotkin-Ellman, and S. K. Hammond, “Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005,” Environmental Health Perspectives, vol. 114, no. 9, pp. 1381–1386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. K. V. Balan, P. Kc, C. A. Mayer, C. G. Wilson, A. Belkadi, and R. J. Martin, “Intrapulmonary lipopolysaccharide exposure upregulates cytokine expression in the neonatal brainstem,” Acta Paediatrica, vol. 101, no. 5, pp. 466–471.
  49. L.-W. Fan, L.-T. Tien, B. Zheng et al., “Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity,” Brain, Behavior, and Immunity, vol. 25, no. 2, pp. 286–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. L.-W. Fan, L.-T. Tien, R. C. S. Lin, K. L. Simpson, P. G. Rhodes, and Z. Cai, “Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life,” Neurobiology of Disease, vol. 44, no. 3, pp. 304–316, 2011. View at Publisher · View at Google Scholar
  51. S. Schuchardt and A. Strube, “Microbial volatile organic compounds in moldy interiors: a long-term climate chamber study,” Journal of Basic Microbiology, 2012. View at Publisher · View at Google Scholar
  52. T. J. Ryan and C. Beaucham, “Dominant microbial volatile organic compounds in 23 US homes,” Chemosphere, vol. 90, no. 3, pp. 977–985, 2013. View at Publisher · View at Google Scholar
  53. A. Araki, A. Kanazawa, T. Kawai et al., “The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes,” The Science of the Total Environment, vol. 423, pp. 18–26, 2012. View at Publisher · View at Google Scholar
  54. American Environmental and Health Foundation, 26th Annual International Symposium on Man and his Environment in Health and Disease Hidden Connections for Chronic Diseases, vol. 1, 2008.
  55. W. G. Sorenson, D. G. Frazer, and B. B. Jarvis, “Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra,” Applied and Environmental Microbiology, vol. 53, no. 6, pp. 1370–1375, 1987. View at Google Scholar · View at Scopus
  56. D. A. Creasia, J. D. Thurman, R. W. Wannemacher, and D. L. Bunner, “Acute Inhalation toxicity of T-2 Mycotoxin in the Rat and Guinea Pig,” Fundamental and Applied Toxicology, vol. 14, no. 1, pp. 54–59, 1990. View at Publisher · View at Google Scholar · View at Scopus
  57. D. A. Creasia, J. D. Thurman, L. J. Jones et al., “Acute inhalation toxicity of t-2 mycotoxin in mice,” Toxicological Sciences, vol. 8, no. 2, pp. 230–235, 1987. View at Publisher · View at Google Scholar · View at Scopus
  58. R. C. Layton, C. W. Purdy, C. A. Jumper, and D. C. Straus, “Detection of macrocyclic trichothecene mycotoxin in a caprine (goat) tracheal instillation model,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 693–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Wang, T. Chai, G. Lu et al., “Simultaneous detection of airborne Aflatoxin, Ochratoxin and Zearalenone in a poultry house by immunoaffinity clean-up and high-performance liquid chromatography,” Environmental Research, vol. 107, no. 2, pp. 139–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Skaug, W. Eduard, and F. C. Størmer, “Ochratoxin A in airborne dust and fungal conidia,” Mycopathologia, vol. 151, no. 2, pp. 93–98, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. F. E. Jonsyn, S. M. Maxwell, and R. G. Hendrickse, “Ochratoxin A and aflatoxins in breast milk samples from Sierra Leone,” Mycopathologia, vol. 131, no. 2, pp. 121–126, 1995. View at Google Scholar · View at Scopus
  62. R. Górny and T. Reponen, “Fungal fragments as indoor air biocontaminants,” Applied and Environmental Microbiology, vol. 68, no. 7, pp. 3522–3531, 2002. View at Publisher · View at Google Scholar
  63. X. Zhang, Q.-Y. Zhang, D. Liu et al., “Expression of cytochrome P450 and other biotransformation genes in fetal and adult human nasal mucosa,” Drug Metabolism and Disposition, vol. 33, no. 10, pp. 1423–1428, 2005. View at Publisher · View at Google Scholar
  64. P. Larsson and H. Tjälve, “Intranasal instillation of aflatoxin B1 in rats: bioactivation in the nasal mucosa and neuronal transport to the olfactory bulb,” Toxicological Sciences, vol. 55, no. 2, pp. 383–391, 2000. View at Publisher · View at Google Scholar
  65. J. Boonen, S. V. Malysheva, L. Taevernier, J. D. Mavungu, S. De Saeger, and B. De Spiegeleer, “Human skin penetration of selected model mycotoxins,” Toxicology, vol. 301, no. 1–3, pp. 21–32, 2012. View at Publisher · View at Google Scholar
  66. T. O. Larsen, A. Svendsen, and J. Smedsgaard, “Biochemical characterization of Ochratoxin A-producing strains of the genus Penicillium,” Applied and Environmental Microbiology, vol. 67, no. 8, pp. 3630–3635, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Cavin, T. Delatour, M. Marin-Kuan et al., “Ochratoxin A—mediated DNA and protein damage: roles of nitrosative and oxidative stresses,” Toxicological Sciences, vol. 110, no. 1, pp. 84–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Zhang, Y. Ye, Y. An, Y. Tian, Y. Wang, and H. Tang, “Systems responses of rats to aflatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices,” Journal of Proteome Research, vol. 10, no. 2, pp. 614–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Roberts, D. L. Laskin, C. V. Smith et al., “Nitrative and oxidative stress in toxicology and disease,” Toxicological Sciences, vol. 112, no. 1, pp. 4–16, 2009. View at Publisher · View at Google Scholar
  70. L. Alpsoy, A. Yildirim, and G. Agar, “The antioxidant effects of vitamin A, C, and e on aflatoxin B1-induced oxidative stress in human lymphocytes,” Toxicology and Industrial Health, vol. 25, no. 2, pp. 121–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Yenilmez, B. Isikli, E. Aral, I. Degirmenci, E. Sutken, and C. Baycu, “Antioxidant effects of melatonin and coenzyme Q10 on oxidative damage caused by single-dose Ochratoxin A in rat kidney,” Chinese Journal of Physiology, vol. 53, no. 5, pp. 310–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Malekinejad, A. A. Farshid, and N. Mirzakhani, “Liquorice plant extract reduces Ochratoxin A-induced nephrotoxicity in rats,” Experimental and Toxicologic Pathology, vol. 63, no. 1-2, pp. 125–130, 2011. View at Publisher · View at Google Scholar
  73. S. H. Abdel-Aziem, A. M. Hassan, and M. A. Abdel-Wahhab, “Dietary supplementation with whey protein and ginseng extract counteracts oxidative stress and DNA damage in rats fed an aflatoxin-contaminated diet,” Mutation Research, vol. 723, no. 1, pp. 65–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Sirajudeen, K. Gopi, J. S. Tyagi, R. P. Moudgal, J. Mohan, and R. Singh, “Protective effects of melatonin in reduction of oxidative damage and immunosuppression induced by aflatoxin B1-contaminated diets in young chicks,” Environmental Toxicology, vol. 26, no. 2, pp. 153–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Cremer, A. Soja, J.-A. Sauer, and M. Damm, “Pro-inflammatory effects of ochratoxin A on nasal epithelial cells,” European Archives of Oto-Rhino-Laryngology, vol. 269, no. 4, pp. 1155–1161, 2012. View at Publisher · View at Google Scholar
  76. L. Curtis and A. Lieberman, “Adverse health effects of indoor molds,” Journal of Nutritional and Environmental Medicine, vol. 14, no. 3, pp. 261–274, 2004. View at Google Scholar
  77. W. J. Rea, N. Didriksen, T. R. Simon, Y. Pan, E. J. Fenyves, and B. Griffiths, “Effects of toxic exposure to molds and mycotoxins in building-related illnesses,” Archives of Environmental Health, vol. 58, no. 7, pp. 399–405, 2004. View at Google Scholar · View at Scopus
  78. M. R. Gray, J. D. Thrasher, R. Crago et al., “Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings,” Archives of Environmental Health, vol. 58, no. 7, pp. 410–420, 2004. View at Google Scholar · View at Scopus
  79. W. Jedrychowski, U. Maugeri, F. Perera et al., “Cognitive function of 6-year old children exposed to mold-contaminated homes in early postnatal period. Prospective birth cohort study in Poland,” Physiology & Behavior, vol. 104, no. 5, pp. 989–995, 2011. View at Publisher · View at Google Scholar
  80. W. A. Gordon, J. B. Cantor, E. Johanning et al., “Cognitive impairment associated with toxigenic fungal exposure: a replication and extension of previous findings,” Applied Neuropsychology, vol. 11, no. 2, pp. 65–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. K. H. Kilburn, “Indoor mold exposure associated with neurobehavioral and pulmonary impairment: a preliminary report,” Archives of Environmental Health, vol. 58, no. 7, pp. 390–398, 2004. View at Google Scholar · View at Scopus
  82. J. V. Baldo, L. Ahmad, and R. Ruff, “Neuropsychological performance of patients following mold exposure,” Applied Neuropsychology, vol. 9, no. 4, pp. 193–202, 2002. View at Google Scholar · View at Scopus
  83. B. R. Crago, M. R. Gray, L. A. Nelson, M. Davis, L. Arnold, and J. D. Thrasher, “Psychological, neuropsychological, and electrocortical effects of mixed mold exposure,” Archives of Environmental Health, vol. 58, no. 8, pp. 452–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Doi and K. Uetsuka, “Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways,” International Journal of Molecular Sciences, vol. 12, no. 8, pp. 5213–5237, 2011. View at Publisher · View at Google Scholar
  85. E. D. Shenassa, C. Daskalakis, A. Liebhaber, M. Braubach, and M. Brown, “Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one’s home as possible depression pathways,” American Journal of Public Health, vol. 97, no. 10, pp. 1893–1899, 2007. View at Publisher · View at Google Scholar
  86. L. Calderón-Garcidueñas, A. Mora-Tiscareño, E. Ontiveros et al., “Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs,” Brain and Cognition, vol. 68, no. 2, pp. 117–127, 2008. View at Publisher · View at Google Scholar
  87. L. Empting, “Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 577–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. K. H. Kilburn, “Neurobehavioral and pulmonary impairment in 105 adults with indoor exposure to molds compared to 100 exposed to chemicals,” Toxicology and Industrial Health, vol. 25, no. 9-10, pp. 681–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. G. H. Ross, W. J. Rea, A. R. Johnson, D. C. Hickey, and T. R. Simon, “Neurotoxicity in single photon emission computed tomography brain scans of patients reporting chemical sensitivities,” Toxicology and Industrial Health, vol. 15, no. 3-4, pp. 415–420, 1999. View at Google Scholar · View at Scopus
  90. J. H. Park and J. M. Cox-Ganser, “Mold exposure and respiratory health in damp indoor environments,” Frontiers in Bioscience, vol. 3, pp. 757–771, 2011. View at Google Scholar · View at Scopus
  91. M. D. Rossman and M. E. Kreider, “Lesson learned from ACCESS (A Case Controlled Etiologic Study of Sarcoidosis),” Proceedings of the American Thoracic Society, vol. 4, no. 5, pp. 453–456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. A. S. Laney, L. A. Cragin, L. Z. Blevins et al., “Sarcoidosis, asthma, and asthma-like symptoms among occupants of a historically water-damaged office building,” Indoor Air, vol. 19, no. 1, pp. 83–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Tercelj, “β-Glucan in BAL among patients with sarcoidosis,” CHEST Journal, vol. 142, no. 4, meeting abstracts, p. 436A, 2012. View at Publisher · View at Google Scholar
  94. L. S. Newman, C. S. Rose, E. A. Bresnitz et al., “A case control etiologic study of sarcoidosis: environmental and occupational risk factors,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 12, pp. 1324–1330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. J. J. K. Jaakkola, A. Ieromnimon, and M. S. Jaakkola, “Interior surface materials and asthma in adults: a population-based incident case-control study,” American Journal of Epidemiology, vol. 164, no. 8, pp. 742–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. K. Karvala, E. Toskala, R. Luukkonen, S. Lappalainen, J. Uitti, and H. Nordman, “New-onset adult asthma in relation to damp and moldy workplaces,” International Archives of Occupational and Environmental Health, vol. 83, no. 8, pp. 855–865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. E. Ponikau J, Frigas, T. Gaffey, and G. Roberts, “The diagnosis and incidence of allergic fungal sinusitis,” Mayo Clinic Proceedings, vol. 74, no. 9, pp. 877–884, 1999. View at Publisher · View at Google Scholar
  98. P. Sethi, R. Saluja, N. Jindal, and V. Singh, “Invasive aspergillosis in an immunocompetent host,” Journal of Oral and Maxillofacial Pathology, vol. 16, no. 2, pp. 297–300, 2012. View at Publisher · View at Google Scholar
  99. R. J. Garcia, P. Troya, and C. Edwards, “Invasive aspergillosis with central nervous system dissemination in a presumably immunocompetent, non-neutropenic patient: case report and review,” Southern Medical Journal, vol. 99, no. 6, pp. 607–610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. J. U. Ponikau, D. A. Sherris, H. Kita, and E. B. Kern, “Intranasal antifungal treatment in 51 patients with chronic rhinosinusitis,” Journal of Allergy and Clinical Immunology, vol. 110, no. 6, pp. 862–866, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. K.-L. Liang, M. C. Su, J. Y. Shiao et al., “Amphotericin B irrigation for the treatment of chronic rhinosinusitis without nasal polyps: a randomized, placebo-controlled, double-blind study,” American Journal of Rhinology, vol. 22, no. 1, pp. 52–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. J. U. Ponikau, D. A. Sherris, A. Weaver, and H. Kita, “Treatment of chronic rhinosinusitis with intranasal amphotericin B: a randomized, placebo-controlled, double-blind pilot trial,” Journal of Allergy and Clinical Immunology, vol. 115, no. 1, pp. 125–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Pi, H. Rj, J. Rimmer, G. Rm, and R. Sacks, “Topical and systemic antifungal therapy for the symptomatic treatment of chronic rhinosinusitis,” Cochrane Review, 2011. View at Publisher · View at Google Scholar
  104. S. Isaacs, S. Fakhri, A. Luong, and M. J. Citardi, “A meta-analysis of topical amphotericin B for the treatment of chronic rhinosinusitis,” International Forum of Allergy & Rhinology, vol. 1, no. 4, pp. 250–254.
  105. B. M. Rains and C. W. Mineck, “Treatment of allergic fungal sinusitis with high-dose intraconazole,” American Journal of Rhinology, vol. 17, no. 1, pp. 1–8, 2003. View at Google Scholar · View at Scopus
  106. M. E. Trigg, D. Morgan, T. L. Burns et al., “Successful program to prevent aspergillus infections in children undergoing marrow transplantation: use of nasal amphotericin,” Bone Marrow Transplantation, vol. 19, no. 1, pp. 43–47, 1997. View at Google Scholar · View at Scopus
  107. K. Fruth, N. Best, M. Amro et al., “No evidence for a correlation of glutathione S-tranferase polymorphisms and chronic rhinosinusitis,” Rhinology, vol. 49, no. 2, pp. 180–184, 2011. View at Publisher · View at Google Scholar
  108. V. Iebba, M. Nicoletti, and S. Schippa, “Gut microbiota and the immune system: an intimate partnership in health and disease,” International Journal of Immunopathology and Pharmacology, vol. 25, no. 4, pp. 823–833, 2012. View at Google Scholar
  109. J. L. Round and S. K. Mazmanian, “The gut microbiota shapes intestinal immune responses during health and disease,” Nature Reviews Immunology, vol. 9, no. 5, pp. 313–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. B. Agawane and P. S. Lonkar, “Effect of probiotic containing Saccharomyces boulardii on experimental ochratoxicosis in broilers: hematobiochemical studies,” Journal of Veterinary Science, vol. 5, no. 4, pp. 359–367, 2004. View at Google Scholar · View at Scopus
  111. S. Abbès, J. Ben Salah-Abbès, H. Sharafi, R. Jebali, K. A. Noghabi, and R. Oueslati, “Ability of Lactobacillus rhamnosus GAF01 to remove AFM1in vitro and to counteract AFM1 immunotoxicity in vivo,” Journal of Immunotoxicology, 2012. View at Publisher · View at Google Scholar
  112. M. Kumar, V. Verma, R. Nagpal et al., “Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B1-induced liver carcinogenesis in rats,” The British Journal of Nutrition, vol. 107, no. 7, pp. 1006–1016, 2012. View at Publisher · View at Google Scholar
  113. M. Peitzsch, E. Bloom, R. Haase, A. Must, and L. Larsson, “Remediation of mould damaged building materials—efficiency of a broad spectrum of treatments,” Journal of Environmental Monitoring, vol. 14, no. 3, pp. 908–915, 2012. View at Publisher · View at Google Scholar
  114. J. Santilli, “Health effects of mold exposure in public schools,” Current Allergy and Asthma Reports, vol. 2, no. 6, pp. 460–467, 2002. View at Google Scholar · View at Scopus
  115. C. Y. Rao, J. M. Cox-Ganser, G. L. Chew, G. Doekes, and S. White, “Use of surrogate markers of biological agents in air and settled dust samples to evaluate a water-damaged hospital,” Indoor Air, Supplement, vol. 15, supplement 9, pp. 89–97, 2005. View at Google Scholar · View at Scopus
  116. NIOSH, “Preventing occupational respiratory disease from exposures caused by dampness in office buildings, schools, and other nonindustrial buildings,” Tech. Rep. no. 2013-102, NIOSH, 2012. View at Google Scholar
  117. G. Schatzmayr, F. Zehner, M. Täubel et al., “Microbiologicals for deactivating mycotoxins,” Molecular Nutrition and Food Research, vol. 50, no. 6, pp. 543–551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. W. J. Crinnion, “The CDC fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assists environmental medicine physicians,” Alternative Medicine Review, vol. 15, no. 2, pp. 101–108, 2010. View at Google Scholar · View at Scopus
  119. J. Prousky, “The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 1, pp. 27–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. J. B. Schulz, J. Lindenau, J. Seyfried, and J. Dichgans, “Glutathione, oxidative stress and neurodeneration,” European Journal of Biochemistry, vol. 467, pp. 4904–4911, 2000. View at Publisher · View at Google Scholar
  121. P. Jenner, D. T. Dexter, J. Sian, A. H. V. Schapira, and C. D. Marsden, “Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease,” Annals of Neurology, vol. 32, supplement, pp. S82–S87, 1992. View at Google Scholar · View at Scopus
  122. S. J. Chinta, M. J. Kumar, M. Hsu et al., “Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration,” Journal of Neuroscience, vol. 27, no. 51, pp. 13997–14006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Viña, A. Lloret, R. Ortí, and D. Alonso, “Molecular bases of the treatment of Alzheimer’s disease with antioxidants: prevention of oxidative stress,” Molecular Aspects of Medicine, vol. 25, no. 1-2, pp. 117–123, 2004. View at Google Scholar
  124. R. L. Woltjer, W. Nghiem, I. Maezawa et al., “Role of glutathione in intracellular amyloid-α precursor protein/carboxy-terminal fragment aggregation and associated cytotoxicity,” Journal of Neurochemistry, vol. 93, no. 4, pp. 1047–1056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. S. J. James, P. Cutler, S. Melnyk et al., “Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism,” American Journal of Clinical Nutrition, vol. 80, no. 6, pp. 1611–1617, 2004. View at Google Scholar · View at Scopus
  126. A. Vojdani, E. Mumper, D. Granpeesheh et al., “Low natural killer cell cytotoxic activity in autism: the role of glutathione, IL-2 and IL-15,” Journal of Neuroimmunology, vol. 205, no. 1-2, pp. 148–154, 2008. View at Google Scholar
  127. D. Matsuzawa, T. Obata, Y. Shirayama et al., “Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study,” PLoS One, vol. 3, no. 4, Article ID e1944, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. C. A. Sun, L. Y. Wang, C. J. Chen et al., “Genetic polymorphisms of glutathione S-transferases M1 and T1 associated with susceptibility to aflatoxin-related hepatocarcinogenesis among chronic hepatitis B carriers: a nested case-control study in Taiwan,” Carcinogenesis, vol. 22, no. 8, pp. 1289–1294, 2001. View at Google Scholar · View at Scopus
  129. A. Meister, “Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy,” Pharmacology and Therapeutics, vol. 51, no. 2, pp. 155–194, 1991. View at Google Scholar · View at Scopus
  130. A. Jain, J. Mårtensson, E. Stole, P. A. Auld, and A. Meister, “Glutathione deficiency leads to mitochondrial damage in brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 5, pp. 1913–1917, 1991. View at Google Scholar
  131. A. Meister, “Mitochondrial changes associated with glutathione deficiency,” Biochimica et Biophysica Acta, vol. 1271, no. 1, pp. 35–42, 1995. View at Publisher · View at Google Scholar
  132. C. Bishop, V. M. Hudson, S. C. Hilton, and C. Wilde, “A pilot study of the effect of inhaled buffered reduced glutathione on the clinical status of patients with cystic fibrosis,” Chest, vol. 127, no. 1, pp. 308–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Griese, J. Ramakers, A. Krasselt et al., “Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 7, pp. 822–828, 2004. View at Google Scholar · View at Scopus
  134. A. Visca, C. T. Bishop, S. C. Hilton, and V. M. Hudson, “Improvement in clinical markers in CF patients using a reduced glutathione regimen: an uncontrolled, observational study,” Journal of Cystic Fibrosis, vol. 7, no. 5, pp. 433–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. W. Lamson and M. S. Brignall, “The use of nebulized glutathione in the treatment of emphysema: a case report,” Alternative Medicine Review, vol. 5, no. 5, pp. 429–431, 2000. View at Google Scholar
  136. B. Testa, D. Testa, M. Mesolella, G. D'Errico, D. Tricarico, and G. Motta, “Management of chronic otitis media with effusion: the role of glutathione,” Laryngoscope, vol. 111, no. 8, pp. 1486–1489, 2001. View at Google Scholar · View at Scopus
  137. Z. Borok, R. Buhl, G. J. Grimes et al., “Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis,” Lancet, vol. 338, no. 8761, pp. 215–216, 1991. View at Publisher · View at Google Scholar · View at Scopus
  138. B. Testa, M. Mesolella, D. Testa et al., “Glutathione in the upper respiratory tract,” Annals of Otology, Rhinology and Laryngology, vol. 104, no. 2, pp. 117–119, 1995. View at Google Scholar · View at Scopus
  139. K. J. Holroyd, R. Buhl, Z. Borok et al., “Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment,” Thorax, vol. 48, no. 10, pp. 985–989, 1993. View at Google Scholar · View at Scopus
  140. D. Hartl, V. Starosta, K. Maier et al., “Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs,” Free Radical Biology and Medicine, vol. 39, no. 4, pp. 463–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. R. M. Marrades, J. Roca, J. A. Barberà, L. De Jover, W. Macnee, and R. Rodriguez-Roisin, “Nebulized glutathione induces bronchoconstriction in patients with mild asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 2, part 1, pp. 425–430, 1997. View at Google Scholar · View at Scopus
  142. R. S. Gruchalla and M. Pirmohamed, “Antibiotic allergy,” The New England Journal of Medicine, vol. 354, no. 6, pp. 601–609, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. J. Ali, M. Ali, S. Baboota et al., “Potential of nanoparticulate drug delivery systems by intranasal administration,” Current Pharmaceutical Design, vol. 16, no. 14, pp. 1644–1653, 2010. View at Publisher · View at Google Scholar
  144. M. Uchida, T. Katoh, M. Mori et al., “Intranasal administration of milnacipran in rats: evaluation of the transport of drugs to the systemic circulation and central nervous system and the pharmacological effect,” Biological and Pharmaceutical Bulletin, vol. 34, no. 5, pp. 740–747, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Born, T. Lange, W. Kern, G. P. McGregor, U. Bickel, and H. L. Fehm, “Sniffing neuropeptides: a transnasal approach to the human brain,” Nature Neuroscience, vol. 5, no. 6, pp. 514–516, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. L. K. Mischley, M. F. Vespignani, and J. S. Finnell, “Safety survey of intranasal glutathione,” Journal of Alternative and Complementary Medicine, 2012. View at Publisher · View at Google Scholar
  147. R. Kannan, J. F. Kuhlenkamp, E. Jeandidler, H. Trlnh, M. Ookhtens, and L. Angeles, “Evidence for carrier mediated transportation of glutathione across the blood brain barrier in the rat,” The Journal of Clinical Investigation, vol. 85, no. 6, pp. 2009–2013, 1990. View at Publisher · View at Google Scholar
  148. J. R. Yi, “Evidence for the existence of a sodium-dependent glutathione (GSH) transporter,” Journal of Biological Chemistry, vol. 271, no. 16, pp. 9754–9758, 1996. View at Publisher · View at Google Scholar
  149. Y. Gilgun-Sherki, E. Melamed, and D. Offen, “Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier,” Neuropharmacology, vol. 40, no. 8, pp. 959–975, 2001. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Agarwal and G. S. Shukla, “Potential role of cerebral glutathione in the maintenance of blood-brain barrier integrity in rat,” Neurochemical Research, vol. 24, no. 12, pp. 1507–1514, 1999. View at Google Scholar · View at Scopus
  151. J.-F. Ghersi-Egea, N. Strazielle, A. Murat, A. Jouvet, A. Buénerd, and M. F. Belin, “Brain protection at the blood-cerebrospinal fluid interface involves a glutathione-dependent metabolic barrier mechanism,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 9, pp. 1165–1175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. A. Muruganandam, C. Smith, R. Ball, T. Herring, and D. Stanimirovic, “Glutathione homeostasis and leukotriene-induced permeability in human blood-brain barrier endothelial cells subjected to in vitro ischemia,” Acta Neurochirurgica, Supplement, vol. 76, pp. 29–34, 2000. View at Google Scholar · View at Scopus
  153. S. Talegaonkar and P. R. Mishra, “Intranasal delivery: an approach to bypass the blood brain barrier,” Indian Journal of Pharmacology, vol. 36, no. 3, pp. 140–147, 2004. View at Google Scholar · View at Scopus
  154. Bastyr University, “Intranasal Glutathione in Parkinson’s Disease,” 2012, http://clinicaltrials.gov/ct2/show/NCT01398748.
  155. G. D. Zeevalk, L. P. Bernard, and F. T. Guilford, “Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells,” Neurochemical Research, vol. 35, no. 10, pp. 1575–1587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Rosenblat, N. Volkova, R. Coleman, and M. Aviram, “Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice,” Atherosclerosis, vol. 195, no. 2, pp. e61–e68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. T. G. Levitskaia, J. E. Morris, J. A. Creim et al., “Aminothiol receptors for decorporation of intravenously administered 60Co in the rat,” Health Physics, vol. 98, no. 1, pp. 53–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. J. K. Kern, D. A. Geier, J. B. Adams, C. R. Garver, T. Audhya, and M. R. Geier, “A clinical trial of glutathione supplementation in autism spectrum disorderss,” Medical Science Monitor, vol. 17, no. 12, pp. CR677–CR682, 2011. View at Publisher · View at Google Scholar
  159. M. Gray, “Personal Communication,” 2013.
  160. A. Roth, K. Chakor, E. E. Creppy, A. Kane, R. Roschenthaler, and G. Dirheimer, “Evidence for an enterohepatic circulation of Ochratoxin A in mice,” Toxicology, vol. 48, no. 3, pp. 293–308, 1988. View at Google Scholar · View at Scopus
  161. K. A. Coddington, S. P. Swanson, A. S. Hassan, and W. B. Buck, “Enterohepatic circulation of T-2 toxin metabolites in the rat,” Drug Metabolism and Disposition, vol. 17, no. 6, pp. 600–605, 1989. View at Google Scholar · View at Scopus
  162. A. Breitholtz-Emanuelsson, R. Fuchs, K. Hult, and L. E. Appelgren, “Syntheses of 14C-Ochratoxin A and 14C-Ochratoxin B and a comparative study of their distribution in rats using whole body autoradiography,” Pharmacology and Toxicology, vol. 70, no. 4, pp. 255–261, 1992. View at Google Scholar · View at Scopus
  163. F. Galvano, A. Pietri, T. Bertuzzi, A. Piva, L. Chies, and M. Galvano, “Activated carbons: in vitro affinity for Ochratoxin A and deoxynivalenol and relation of adsorption ability to physicochemical parameters,” Journal of Food Protection, vol. 61, no. 4, pp. 469–475, 1998. View at Google Scholar · View at Scopus
  164. G. Avantaggiato, R. Havenaar, and A. Visconti, “Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials,” Food and Chemical Toxicology, vol. 42, no. 5, pp. 817–824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. N. M. Gibson, T. J. M. Luo, D. W. Brenner, and O. Shenderova, “Immobilization of mycotoxins on modified nanodiamond substrates,” Biointerphases, vol. 6, no. 4, pp. 210–217, 2011. View at Publisher · View at Google Scholar
  166. D. E. Diaz, W. M. Hagler, J. T. Blackwelder et al., “Aflatoxin Binders II: reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed,” Mycopathologia, vol. 157, no. 2, pp. 233–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  167. J. P. Nolan, J. J. McDevitt, and G. S. Goldmann, “Endotoxin binding by charged and uncharged resins,” Proceedings of the Society for Experimental Biology and Medicine, vol. 149, no. 3, pp. 766–770, 1975. View at Google Scholar · View at Scopus
  168. J. Steczko, S. R. Ash, D. E. Blake, D. J. Carr, and R. H. Bosley, “Cytokines and endotoxin removal by sorbents and its application in push-pull sorbent-based pheresis: the biologic-DTPF system,” Artificial Organs, vol. 23, no. 4, pp. 310–318, 1999. View at Publisher · View at Google Scholar · View at Scopus
  169. P. Wang, E. Afriyie-Gyawu, Y. Tang et al., “NovaSil clay intervention in Ghanaians at high risk for aflatoxicosis: II. Reduction in biomarkers of aflatoxin exposure in blood and urine,” Food Additives and Contaminants Part A, vol. 25, no. 5, pp. 622–634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. T. D. Phillips, E. Afriyie-Gyawu, J. Williams et al., “Reducing human exposure to aflatoxin through the use of clay: a review,” Food Additives and Contaminants, vol. 25, no. 2, pp. 134–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. E. Afriyie-Gyawu, Z. Wang, N. A. Ankrah et al., “NovaSil clay does not affect the concentrations of vitamins A and E and nutrient minerals in serum samples from Ghanaians at high risk for aflatoxicosis,” Food Additives and Contaminants Part A, vol. 25, no. 7, pp. 872–884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. M. T. Simonich, P. A. Egner, B. D. Roebuck et al., “Natural chlorophyll inhibits aflatoxin B1-induced multi-organ carcinogenesis in the rat,” Carcinogenesis, vol. 28, no. 6, pp. 1294–1302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. K. Gross-Steinmeyer and D. L. Eaton, “Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1,” Toxicology, vol. 299, no. 2-3, pp. 69–79, 2012. View at Publisher · View at Google Scholar
  174. S. J. Genuis, G. Schwalfenberg, A. K. J. Siy, and I. Rodushkin, “Toxic element contamination of natural health products and pharmaceutical preparations,” PLoS One, vol. 7, no. 11, Article ID e49676, 2012. View at Google Scholar
  175. J. J. Boylan, J. L. Egle, and P. S. Guzelian, “Cholestyramine: use as a new therapeutic approach for chlordecone (Kepone) poisoning,” Science, vol. 199, no. 4331, pp. 893–895, 1978. View at Google Scholar · View at Scopus
  176. W. J. Cohn, J. J. Boylan, and R. V. Blanke, “Treatment of chlordecone (Kepone) toxicity with cholestyramine. Results of a controlled clinical trial,” The New England Journal of Medicine, vol. 298, no. 5, pp. 243–248, 1978. View at Google Scholar · View at Scopus
  177. S. Takenaka, K. Morita, H. Tokiwa, and K. Takahashi, “Effects of rice bran fibre and cholestyramine on the faecal excretion of Kanechlor 600 (PCB) in rats,” Xenobiotica, vol. 21, no. 3, pp. 351–357, 1991. View at Google Scholar · View at Scopus
  178. S. Tonstad, J. Knudtzon, M. Sivertsen, H. Refsum, and L. Ose, “Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia,” Journal of Pediatrics, vol. 129, no. 1, pp. 42–49, 1996. View at Google Scholar · View at Scopus
  179. A. Kerkadi, C. Barriault, B. Tuchweber et al., “Dietary cholestyramine reduces Ochratoxin A-induced nephrotoxicity in the rat by decreasing plasma levels and enhancing fecal excretion of the toxin,” Journal of Toxicology and Environmental Health Part A, vol. 53, no. 3, pp. 231–250, 1998. View at Google Scholar · View at Scopus
  180. M. S. Madhyastha, A. A. Frohlich, and R. R. Marquardt, “Effect of dietary cholestyramine on the elimination pattern of Ochratoxin A in rats,” Food and Chemical Toxicology, vol. 30, no. 8, pp. 709–714, 1992. View at Publisher · View at Google Scholar
  181. A. Kerkadi, C. Barriault, R. R. Marquardt et al., “Cholestyramine protection against Ochratoxin A toxicity: role of Ochratoxin A sorption by the resin and bile acid enterohepatic circulation,” Journal of Food Protection, vol. 62, no. 12, pp. 1461–1465, 1999. View at Google Scholar · View at Scopus
  182. P. A. M. Van Leeuwen, M. A. Boermeester, A. P. J. Houdijk et al., “Pretreatment with enteral cholestyramine prevents suppression of the cellular immune system after partial hepatectomy,” Annals of Surgery, vol. 221, no. 3, pp. 282–290, 1995. View at Google Scholar · View at Scopus
  183. V. Morinville and J. McDonald, “Clostridium difficile-associated diarrhea in 200 Canadian children,” Canadian Journal of Gastroenterology, vol. 19, no. 8, pp. 497–501, 2005. View at Google Scholar · View at Scopus
  184. M. D. Moncino and J. M. Falletta, “Multiple relapses of Clostridium difficile-associated diarrhea in a cancer patient: successful control with long-term cholestyramine therapy,” American Journal of Pediatric Hematology/Oncology, vol. 14, no. 4, pp. 361–364, 1992. View at Google Scholar · View at Scopus
  185. M. Y. Brouillard and J. G. Rateau, “Ability of cholestyramine to bind Escherichia coli and Vibrio cholerae toxins,” Annales de Gastroentérologie et d’Hépatologie, vol. 24, no. 3, pp. 133–138.
  186. G. Bounous, “Whey protein concentrate (WPC) and glutathione modulation in cancer treatment,” Anticancer Research, vol. 20, no. 6 C, pp. 4785–4792, 2000. View at Google Scholar · View at Scopus
  187. H. Malekinejad, N. Mirzakhani, M. Razi, H. Cheraghi, A. Alizadeh, and F. Dardmeh, “Protective effects of melatonin and Glycyrrhiza glabra extract on Ochratoxin A-induced damages on testes in mature rats,” Human and Experimental Toxicology, vol. 30, no. 2, pp. 110–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  188. H. Ozen, M. Karaman, Y. Ciğremiş, M. Tuzcu, K. Ozcan, and D. Erdağ, “Effectiveness of melatonin on aflatoxicosis in chicks,” Research in Veterinary Science, vol. 86, no. 3, pp. 485–489, 2009. View at Publisher · View at Google Scholar
  189. J. Mrtensson and A. Meister, “Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 11, pp. 4656–4660, 1991. View at Google Scholar · View at Scopus
  190. H. Türkez and T. Sisman, “The genoprotective activity of resveratrol on aflatoxin B1-induced DNA damage in human lymphocytes in vitro,” Toxicology and Industrial Health, vol. 28, no. 5, pp. 474–480, 2012. View at Publisher · View at Google Scholar
  191. D. S. El-Agamy, “Comparative effects of curcumin and resveratrol on aflatoxin B1-induced liver injury in rats,” Archives of Toxicology, vol. 84, no. 5, pp. 389–396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  192. P. Galtier, J. L. Charpenteau, M. Alvinerie, and C. Labouche, “The pharmacokinetic profile of Ochratoxin A in the rat after oral and intravenous administration,” Drug Metabolism and Disposition, vol. 7, no. 6, pp. 429–434, 1979. View at Google Scholar · View at Scopus
  193. M. S. Madhyastha, R. R. Marquardt, and A. A. Frohlich, “Hydrolysis of Ochratoxin A by the microbial activity of digesta in the gastrointestinal tract of rats,” Archives of Environmental Contamination and Toxicology, vol. 23, no. 4, pp. 468–472, 1992. View at Google Scholar · View at Scopus
  194. B. Kabak, E. F. A. Brandon, I. Var, M. Blokland, and A. J. A. M. Sips, “Effects of probiotic bacteria on the bioaccessibility of aflatoxin B1 and Ochratoxin A using an in vitro digestion model under fed conditions,” Journal of Environmental Science and Health Part B, vol. 44, no. 5, pp. 472–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  195. F. B. Kasmani, M. A. K. Torshizi, A. Allameh, and F. Shariatmadari, “A novel aflatoxin-binding Bacillus probiotic: performance, serum biochemistry, and immunological parameters in Japanese quail,” Poultry Science, vol. 91, no. 8, pp. 1846–1853, 2012. View at Publisher · View at Google Scholar
  196. W. A. Awad, K. Ghareeb, J. Böhm, and J. Zentek, “Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation,” Food Additives and Contaminants Part A, vol. 27, no. 4, pp. 510–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. K. Gross-Steinmeyer, P. L. Stapleton, J. H. Tracy, T. K. Bammler, S. C. Strom, and D. L. Eaton, “Sulforaphane-and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression,” Toxicological Sciences, vol. 116, no. 2, pp. 422–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. T. W. Kensler, J.-G. Chen, P. A. Egner et al., “Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo Township, Qidong, People's Republic of China,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 11 I, pp. 2605–2613, 2005. View at Publisher · View at Google Scholar · View at Scopus
  199. L. Tang, H. Guan, X. Ding, and J. S. Wang, “Modulation of aflatoxin toxicity and biomarkers by lycopene in F344 rats,” Toxicology and Applied Pharmacology, vol. 219, no. 1, pp. 10–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  200. S. Gao, X. Y. Chen, R. Z. Zhu, B.-M. Choi, S. J. Kim, and B. R. Kim, “Dual effects of phloretin on aflatoxin B1 metabolism: activation and detoxification of aflatoxin B1,” BioFactors, vol. 38, no. 1, pp. 34–43, 2012. View at Publisher · View at Google Scholar
  201. F. L. P. Soares, R. de Oliveira Matoso, L. G. Teixeira et al., “Gluten-free diet reduces adiposity, inflammation and insulin resistance associated with the induction of PPAR-alpha and PPAR-gamma expression,” The Journal of Nutritional Biochemistry, 2012. View at Publisher · View at Google Scholar
  202. J. R. Jackson, W. W. Eaton, N. G. Cascella, A. Fasano, and D. L. Kelly, “Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity,” The Psychiatric Quarterly, vol. 83, no. 1, pp. 91–102, 2012. View at Publisher · View at Google Scholar
  203. A. Kheder, S. Currie, C. Romanowski, and M. Hadjivassiliou, “Progressive ataxia with palatal tremor due to gluten sensitivity,” Movement Disorders, vol. 27, no. 1, pp. 62–63, 2012. View at Publisher · View at Google Scholar
  204. Y. Zhang, D. L. Menkes, and D. S. Silvers, “Propriospinal myoclonus associated with gluten sensitivity in a young woman,” Journal of the Neurological Sciences, vol. 315, no. 1-2, p. 141, 2012. View at Publisher · View at Google Scholar
  205. M. Pietzak, “Celiac disease, wheat allergy, and gluten sensitivity: when gluten free is not a fad,” Journal of Parenteral and Enteral Nutrition, vol. 36, no. 1, supplement, pp. 68S–75S, 2012. View at Publisher · View at Google Scholar
  206. W. Crinnion, “Components of practical clinical detox programs—Sauna as a therapeutic tool,” Alternative Therapies in Health and Medicine, vol. 13, no. 2, pp. S154–S156, 2007. View at Google Scholar · View at Scopus
  207. W. Crinnion, “Sauna as a valuable clinical tool for cardiovascular, autoimmune, toxicant-induced and other chronic health problems,” Alternative Medicine Review, vol. 16, no. 3, pp. 215–225, 2011. View at Google Scholar
  208. N. Kluger, “Sauna: cardiac and vascular benefits and risks,” La Presse Médicale, vol. 40, no. 10, pp. 895–899, 2011. View at Publisher · View at Google Scholar
  209. W. J. Crinnion, “Sauna as a valuable clinical tool for cardiovascular, autoimmune, toxicant-induced and other chronic health problems,” Alternative Medicine Review, vol. 16, no. 3, pp. 215–225, 2011. View at Google Scholar
  210. N. J. M. Cox, G. M. Oostendorp, H. T. M. Folgering, and C. L. A. Van Herwaarden, “Sauna to transiently improve pulmonary function in patients with obstructive lung disease,” Archives of Physical Medicine and Rehabilitation, vol. 70, no. 13, pp. 911–913, 1989. View at Google Scholar · View at Scopus
  211. S. J. Genuis, “Elimination of persistent toxicants from the human body,” Human and Experimental Toxicology, vol. 30, no. 1, pp. 3–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  212. S. J. Genuis, S. Beesoon, R. A. Lobo, and D. Birkholz, “Human elimination of phthalate compounds: Blood, Urine, and Sweat (BUS) study,” The Scientific World Journal, vol. 2012, Article ID 615068, 10 pages, 2012. View at Publisher · View at Google Scholar
  213. M. E. Sears, K. J. Kerr, and R. I. Bray, “Arsenic, cadmium, lead, and mercury in sweat: a systematic review,” Journal of Environmental and Public Health, vol. 2012, Article ID 184745, 10 pages, 2012. View at Publisher · View at Google Scholar
  214. F. Cechetti, P. V. Worm, V. R. Elsner et al., “Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat,” Neurobiology of Learning and Memory, vol. 97, no. 1, pp. 90–96, 2012. View at Publisher · View at Google Scholar
  215. P. N. Mazzola, M. Terra, A. P. Rosa et al., “Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats.,” Metabolic Brain Disease, vol. 26, no. 4, pp. 291–297, 2011. View at Publisher · View at Google Scholar
  216. S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004. View at Publisher · View at Google Scholar · View at Scopus