Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 793091, 11 pages
http://dx.doi.org/10.1155/2013/793091
Review Article

From Ontology to Semantic Similarity: Calculation of Ontology-Based Semantic Similarity

1Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
2Department of Automation, Tsinghua University, Beijing 100084, China

Received 27 October 2012; Accepted 16 January 2013

Academic Editors: Y. Cai, S. Mohan, C. Proctor, K. Spiegel, and J. Wang

Copyright © 2013 Mingxin Gan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Schulze and J. Downward, “Navigating gene expression using microarrays—a technology review,” Nature Cell Biology, vol. 3, no. 8, pp. E190–E195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A comprehensive two-hybrid analysis to explore the yeast protein interactome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4569–4574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Uetz, L. Giot, G. Cagney et al., “A comprehensive analysis of protein'protein interactions in Saccharomyces cerevisiae,” Nature, vol. 403, pp. 623–627, 2000. View at Publisher · View at Google Scholar
  4. R. Aebersold and M. Mann, “Mass spectrometry-based proteomics,” Nature, vol. 422, no. 6928, pp. 198–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Smith, M. Ashburner, C. Rosse et al., “The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration,” Nature Biotechnology, vol. 25, no. 11, pp. 1251–1255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. R. Gruber, “A translation approach to portable ontology specifications,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. Rodríguez and M. J. Egenhofer, “Determining semantic similarity among entity classes from different ontologies,” IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 2, pp. 442–456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. The Gene Ontology Consortium, “The Gene Ontology project in 2008,” Nucleic Acids Research, vol. 36, pp. D440–D444, 2008. View at Publisher · View at Google Scholar
  9. P. N. Robinson, S. Köhler, S. Bauer, D. Seelow, D. Horn, and S. Mundlos, “The human phenotype ontology: a tool for annotating and analyzing human hereditary disease,” American Journal of Human Genetics, vol. 83, no. 5, pp. 610–615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Jaiswal, S. Avraham, K. Ilic et al., “Plant Ontology (PO): a controlled vocabulary of plant structures and growth stages,” Comparative and Functional Genomics, vol. 6, no. 7-8, pp. 388–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gottlieb, G. Y. Stein, E. Ruppin, and R. Sharan, “PREDICT: a method for inferring novel drug indications with application to personalized medicine,” Molecular Systems Biology, vol. 7, article 496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Jiang, M. Gan, and P. He, “Constructing a gene semantic similarity network for the inference of disease genes,” BMC Systems Biology, vol. 5, supplement 2, article S2, 2011. View at Publisher · View at Google Scholar
  13. C. Pesquita, D. Faria, A. O. Falcão, P. Lord, and F. M. Couto, “Semantic similarity in biomedical ontologies,” PLoS Computational Biology, vol. 5, no. 7, Article ID e1000443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus statistics and lexical taxonomy,” in Proceedings of the IInternational Conference on Research in Computational Linguistics, pp. 19–33, 1997.
  15. D. Lin, “An information-theoretic definition of similarity,” in Proceedings of the 15th International Conference on Machine Learning, pp. 296–304, Morgan Kaufmann, 1998.
  16. A. Maedche and S. Staab, “Measuring similarity between ontologies,” in Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, pp. 15–21, 2002. View at Google Scholar
  17. T. Pedersen, S. V. S. Pakhomov, S. Patwardhan, and C. G. Chute, “Measures of semantic similarity and relatedness in the biomedical domain,” Journal of Biomedical Informatics, vol. 40, no. 3, pp. 288–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Resnik, “Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language,” Journal of Artificial Intelligence Research, vol. 11, pp. 95–130, 1999. View at Google Scholar · View at Scopus
  19. J. Z. Wang, Z. Du, R. Payattakool, P. S. Yu, and C. F. Chen, “A new method to measure the semantic similarity of GO terms,” Bioinformatics, vol. 23, no. 10, pp. 1274–1281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Degtyarenko, P. de matos, M. Ennis et al., “ChEBI: a database and ontology for chemical entities of biological interest,” Nucleic Acids Research, vol. 36, no. 1, pp. D344–D350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. A. Thorisson, J. Muilu, and A. J. Brookes, “Genotype-phenotype databases: challenges and solutions for the post-genomic era,” Nature Reviews Genetics, vol. 10, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Sidhu, T. S. Dillon, E. Chang, and B. S. Sidhu, “Protein ontology: vocabulary for protein data,” in Proceedings of the 3rd International Conference on Information Technology and Applications (ICITA '05), pp. 465–469, IEEE, July 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Segerdell, J. B. Bowes, N. Pollet, and P. D. Vize, “An ontology for Xenopus anatomy and development,” BMC Developmental Biology, vol. 8, article 92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. J. Bryson-Richardson, S. Berger, T. F. Schilling et al., “FishNet: an online database of zebrafish anatomy,” BMC Biology, vol. 5, article 34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. V. A. McKusick, “Mendelian inheritance in man and its online version, OMIM,” American Journal of Human Genetics, vol. 80, no. 4, pp. 588–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and application of a metric on semantic nets,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, pp. 17–30, 1989. View at Google Scholar · View at Scopus
  28. M. Sussna, “Word sense disambiguation for free-text indexing using a massive semantic network,” in Proceedings of the 2nd International Conference on Information and Knowledge Management, pp. 67–74, ACM, Washington, DC, USA, November 1993. View at Scopus
  29. Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138, Association for Computational Linguistics, Las Cruces, NM, USA, 1994.
  30. N. Seco, T. Veale, and J. Hayes, “An intrinsic information content metric for semantic similarity in WordNet,” ECAI. Citeseer, p. 1089, 2004.
  31. A. Schlicker, F. S. Domingues, J. Rahnenführer, and T. Lengauer, “A new measure for functional similarity of gene products based on gene ontology,” BMC Bioinformatics, vol. 7, article 302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Wang, F. Azuaje, O. Bodenreider, and J. Dopazo, “Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships,” in Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '04), pp. 25–31, IEEE, October 2004. View at Scopus
  33. W. N. Lee, N. Shah, K. Sundlass, and M. Musen, “Comparison of ontology-based semantic-similarity measures,” in Proceedings of the American Medical Informatics Association Annual Symposium Proceedings, pp. 384–388, American Medical Informatics Association, 2008. View at Scopus
  34. F. M. Couto, M. J. Silva, and P. M. Coutinho, “Semantic similarity over the gene ontology: family correlation and selecting disjunctive ancestors,” in Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 343–344, ACM, November 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Bodenreider, M. Aubry, and A. Burgun, “Non-lexical approaches to identifying associative relations in the gene ontology,” in Proceedings of the Pacific Symposium on Biocomputing, pp. 91–102, NIH, 2005.
  36. R. M. Riensche, B. L. Baddeley, A. P. Sanfilippo, C. Posse, and B. Gopalan, “XOA: web-enabled cross-ontological analytics,” in Proceedings of the IEEE Congress on Services, pp. 99–105, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Tversky, “Features of similarity,” Psychological Review, vol. 84, no. 4, pp. 327–352, 1977. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Rodríguez, M. Egenhofer, and R. Rugg, “Assessing semantic similarities among geospatial feature class definitions,” in Interoperating Geographic Information Systems, pp. 189–202, 1999. View at Google Scholar
  39. M. A. Rodríguez and M. J. Egenhofer, “Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure,” International Journal of Geographical Information Science, vol. 18, no. 3, pp. 229–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Leacock and M. Chodorow, “Combining local context and WordNet similarity for word sense and WordNet similarity for word sense identification,” in WordNet: An Electronic Lexical Database, C. Fellbaum, Ed., The MIT Press, Cambridge, Mass, USA, 1998. View at Google Scholar
  41. H. Al-Mubaid and H. A. Nguyen, “A cluster-based approach for semantic similarity in the biomedical domain,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 2713–2717, IEEE, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Zhang, X. Shang, M. Wang, and J. Diao, “A new measure based on gene ontology for semantic similarity of genes,” in Proceedings of the WASE International Conference on Information Engineering (ICIE '10), pp. 85–88, IEEE, August 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Schickel-Zuber and B. Faltings, “OSS: a semantic similarity function based on hierarchical ontologies,” in Proceedings of the 20th International Joint Conference on Artifical Intelligence, pp. 551–556, Morgan Kaufmann, 2007.
  44. Y. Guisheng and S. Qiuyan, “Research on ontology-based measuring semantic similarity,” in Proceedings of the International Conference on Internet Computing in Science and Engineering (ICICSE '08), pp. 250–253, IEEE, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Yu, F. Li, Y. Qin, X. Bo, Y. Wu, and S. Wang, “GOSemSim: an R package for measuring semantic similarity among GO terms and gene products,” Bioinformatics, vol. 26, no. 7, pp. 976–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Zheng, F. Azuaje, and H. Wang, “seGOsa: software environment for Gene Ontology-driven similarity assessment,” in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM '10), pp. 539–542, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Li, B. Gong, X. Chen et al., “DOSim: an R package for similarity between diseases based on disease ontology,” BMC Bioinformatics, vol. 12, article 266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, p. R80, 2004. View at Google Scholar · View at Scopus
  49. H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 27, no. 1, pp. 29–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Sevilla, V. Segura, A. Podhorski et al., “Correlation between gene expression and GO semantic similarity,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 2, no. 4, pp. 330–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Moreau and L. C. Tranchevent, “Computational tools for prioritizing candidate genes: boosting disease gene discovery,” Nature Reviews Genetics, vol. 13, no. 8, pp. 523–536, 2012. View at Publisher · View at Google Scholar
  52. A. M. Glazier, J. H. Nadeau, and T. J. Aitman, “Genetics: finding genes that underline complex traits,” Science, vol. 298, no. 5602, pp. 2345–2349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Wu, R. Jiang, M. Q. Zhang, and S. Li, “Network-based global inference of human disease genes,” Molecular Systems Biology, vol. 4, article 189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. A. van Driel, J. Bruggeman, G. Vriend, H. G. Brunner, and J. A. M. Leunissen, “A text-mining analysis of the human phenome,” European Journal of Human Genetics, vol. 14, no. 5, pp. 535–542, 2006. View at Publisher · View at Google Scholar · View at Scopus