Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 810175, 12 pages
http://dx.doi.org/10.1155/2013/810175
Research Article

Investigation of the Effects of Length to Depth Ratio on Open Supersonic Cavities Using CFD and Proper Orthogonal Decomposition

Department of Mechanical Engineering, TOBB University of Economics and Technology, Sogutozu Cad., No. 43, 06560 Ankara, Turkey

Received 12 April 2013; Accepted 20 May 2013

Academic Editors: A. Hadjadj and E. E. Imrak

Copyright © 2013 Ibrahim Yilmaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Simulations of supersonic turbulent flow over an open rectangular cavity are performed to observe the effects of length to depth ratio ( ) of the cavity on the flow structure. Two-dimensional compressible time-dependent Reynolds-averaged Navier-Stokes equations with k- turbulence model are solved. A reduced order modeling approach, Proper Orthogonal Decomposition (POD) method, is used to further analyze the flow. Results are obtained for cavities with several ratios at a Mach number of 1.5. Mostly, sound pressure levels (SPL) are used for comparison. After a reduced order modeling approach, the number of modes necessary to represent the systems is observed for each case. The necessary minimum number of modes to define the system increases as the flow becomes more complex with the increase in the ratio. This study provides a basis for the control of flow over supersonic open cavities by providing a reduced order model for flow control, and it also gives an insight to cavity flow physics by comparing several simulation results with different length to depth ratios.