Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 825437, 7 pages
http://dx.doi.org/10.1155/2013/825437
Research Article

Reduction of the Livestock Ammonia Emission under the Changing Temperature during the Initial Manure Nitrogen Biomineralization

1Institute of Energy and Biotechnology Engineering, Aleksandras Stulginskis University, Kaunas distr. 53361 Akademija, Lithuania
2Institute of Ecology and Environment, Aleksandras Stulginskis University, Kaunas distr. 53361 Akademija, Lithuania

Received 11 September 2013; Accepted 10 October 2013

Academic Editors: G.-C. Fang and G. O. Thomas

Copyright © 2013 Rolandas Bleizgys et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Webb, H. Menzi, B. F. Pain et al., “Managing ammonia emissions from livestock production in Europe,” Environmental Pollution, vol. 135, no. 3, pp. 399–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. S. G. Sommer, G. Q. Zhang, A. Bannink et al., “Algorithms determining ammonia emission from buildings housing cattle and pigs and from Mmanure stores,” Advances in Agronomy, vol. 89, pp. 261–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Epinatjeff, “Aussenklimastalle fur Milchvien,” Landt, vol. 52, pp. 313–316, 1997. View at Google Scholar
  4. K. A. Janni and D. M. Alenn, “Thermal environmental conditions in curtain-sided naturaly ventilated dairy freestall barns,” in Livestock Environment, vol. 6, pp. 367–376, ASAE 701PO2001, Kentucky, Ky, USA, 2001. View at Google Scholar
  5. R. Hilty, R. Kaufman, and L. Caenegem, “Building for cattle husbandry,” in Yearbook of Agricultural Engineering, H. J. Mathies and F. Meier, Eds., vol. 14, pp. 163–170, VDMA Landtechnik, Burgdorf, Switzerland, 2003. View at Google Scholar
  6. M. M. Lucenko and D. V. Salyga, “The estimation of functioning of new volumetric-planning and technological decisions of easily-sectional cowsheds in the conditions of Ukraine,” in New Development of Technologies and Technical Means In Dairy, pp. 140–146, Gomel, Minsk, Belarus, 2006. View at Google Scholar
  7. G. Brose, Emission von klimarelevanten Gasen, ammoniak und Geruch aus einem milchviehstall mit schwerkraftlüftung [M.S. thesis], Universität Hohenheim, Stuttgart, Germany, 2000.
  8. B. Eurich-Menden, Ammoniak-Emissionen in der Landwirtschaft minDern, KTBL, Hannover, Germany, 1993.
  9. G. L. Velthof, C. van Bruggen, C. M. Groenestein, B. J. de Haan, M. W. Hoogeveen, and J. F. M. Huijsmans, “A model for inventory of ammonia emissions from agriculture in the Netherlands,” Atmospheric Environment, vol. 46, pp. 248–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Cassel, L. Ashbaugh, R. Flocchini, and D. Meyer, “Ammonia flux from open-lot dairies: development of measurement methodology and emission factors,” Journal of the Air and Waste Management Association, vol. 55, no. 6, pp. 816–825, 2005. View at Google Scholar · View at Scopus
  11. A. J. Heber, J. Ni, T. T. Lim et al., “Quality assured measurements of animal building emissions: gas concentrations,” Journal of the Air and Waste Management Association, vol. 56, no. 10, pp. 1472–1483, 2006. View at Google Scholar · View at Scopus
  12. H. G. J. Snell, F. Seipelt, and H. F. A. Van Den Weghe, “Ventilation rates and gaseous emissions from naturally ventilated dairy houses,” Biosystems Engineering, vol. 86, no. 1, pp. 67–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. F. K. Teye, Microclimate and gas emissions in dairy buildings: instrumentation, theory and measurements [Ph.D. thesis], University of Helsinki, Helsinki, Finland, 2008.
  14. E. Vranken, S. Claes, J. Hendriks, P. Darius, and D. Berckmans, “Intermittent measurements to determine ammonia emissions from livestock buildings,” Biosystems Engineering, vol. 88, no. 3, pp. 351–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Dekock, E. Vranken, E. Gallmann, E. Hartung, and D. Berckmans, “Optimisation and validation of the intermittent measurement method to determine ammonia emissions from livestock buildings,” Biosystems Engineering, vol. 104, no. 3, pp. 396–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. K. Saha, G. Zhang, and J. Ni, “Airflow and concentration characterisation and ammonia mass transfer modelling in wind tunnel studies,” Biosystems Engineering, vol. 107, no. 4, pp. 328–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Rong, P. V. Nielsen, and G. Zhang, “Effects of airflow and liquid temperature on ammonia mass transfer above an emission surface: experimental study on emission rate,” Bioresource Technology, vol. 100, no. 20, pp. 4654–4661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Aguerre, M. A. Wattiaux, and J. M. Powell, “Emissions of ammonia, nitrous oxide, methane, and carbon dioxide during storage of dairy cow manure as affected by dietary forage-to-concentrate ratio and crust formation,” Journal of Dairy Science, vol. 95, no. 12, pp. 7409–7416, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Burgos, N. M. Embertson, Y. Zhao, F. M. Mitloehner, E. J. DePeters, and J. G. Fadel, “Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: relation of milk urea nitrogen to ammonia emissions,” Journal of Dairy Science, vol. 93, no. 6, pp. 2377–2386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Zhang, J. S. Strøm, B. Li et al., “Emission of ammonia and other contaminant gases from naturally ventilated dairy cattle buildings,” Biosystems Engineering, vol. 92, no. 3, pp. 355–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Van der Stelt, E. J. M. Temminghoff, P. C. J. Van Vliet, and W. H. Van Riemsdijk, “Volatilization of ammonia from manure as affected by manure additives, temperature and mixing,” Bioresource Technology, vol. 98, no. 18, pp. 3449–3455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. M. Ngwabie, Gas emissions from dairy cow and fattening pig buildings: effects of animal parameters, climatic factors and manure management on methane and ammonia emissions [Ph.D. thesis], Swedish University of Agricultural Sciences, Uppsala, Sweden, 2011.
  23. J. Pereira, T. H. Misselbrook, D. R. Chadwick, J. Coutinho, and H. Trindade, “Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: a laboratory study,” Biosystems Engineering, vol. 112, no. 2, pp. 138–150, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. N. W. M. Ogink, J. Mosquera, S. Calvet, and G. Zhang, “Methods for measuring gas emissions from naturally ventilated livestock buildings: developments over the last decade and perspectives for improvement,” Biosystems Engineering, vol. 116, no. 3, pp. 297–308, 2013. View at Publisher · View at Google Scholar
  25. C. Wang, B. Li, G. Zhang, H. B. Rom, and J. S. Strøm, “Model estimation and measurement of ammonia emission from naturally ventilated dairy cattle buildings with slatted floor designs,” Journal of the Air and Waste Management Association, vol. 56, no. 9, pp. 1252–1259, 2006. View at Google Scholar · View at Scopus
  26. J. W. B. Moir, Ed., Nitrogen Cycling in Bacteria: Molecular Analysis, Caister Academic Press, Norfolk, UK, 2011.