Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 832682, 9 pages
http://dx.doi.org/10.1155/2013/832682
Research Article

Static and Dynamic Electronic (Hyper)polarizabilities of Dimethylnaphthalene Isomers: Characterization of Spatial Contributions by Density Analysis

Department of Chemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

Received 12 August 2013; Accepted 4 September 2013

Academic Editors: N. Lisitza and P. Pietrzyk

Copyright © 2013 Andrea Alparone. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Arcos and M. F. Argus, “Molecular geometry and carcinogenic activity of aromatic compounds. New perspectives,” Advances in Cancer Research, vol. 11, pp. 305–471, 1969. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Hoffmann and E. L. Wynder, “Organic particulate pollutants—chemical analysis and bioassays for carcinogenicity,” in Air Pollution, A. C. Stern, Ed., vol. 2, pp. 361–455, Academic Press, New York, NY, USA, 1977. View at Google Scholar
  3. H. V. Gelboin and P. O. P. Ts’o, Polycyclic Hydrocarbons and Cancer, Academic Press, New York, NY, USA, 1978.
  4. R. G. Harvey, Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity, Cambridge University Press, Cambridge, UK, 1991.
  5. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, Calif, USA, 2000.
  6. C. A. Peters, “Coal tar dissolution in water-misclble solvents: experimental evaluation,” Environment Science Technology, vol. 27, no. 13, pp. 2831–2843, 1993. View at Google Scholar · View at Scopus
  7. K. L. Garcia, J. J. Delfino, and D. H. Powell, “Non-regulated organic compounds in Florida sediments,” Water Research, vol. 27, no. 11, pp. 1601–1613, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. L. P. Burkhard and B. R. Sheedy, “Evaluation of screening procedures for bioconcentratable organic chemicals in effluents and sediments,” Environmental Toxicology and Chemistry, vol. 14, no. 4, pp. 697–711, 1995. View at Google Scholar · View at Scopus
  9. R. Atkinson and S. M. Aschmann, “Kinetics of the reactions of naphthalene, 2-methylnaphthalene, and 2,3-dimethylnaphthalene with OH radicals and with O3 at 295 ± 1 K,” International Journal of Chemical Kinetics, vol. 18, pp. 569–573, 1986. View at Google Scholar
  10. C. E. Banceu, C. Mihele, D. A. Lane, and N. J. Bunce, “Reactions of methylated naphthalenes with hydroxyl radicals under simulated atmospheric conditions,” Polycyclic Aromatic Compounds, vol. 18, no. 4, pp. 415–425, 2001. View at Google Scholar · View at Scopus
  11. P. T. Phousongphouang and J. Arey, “Rate constants for the gas-phase reactions of a series of alkylnaphthalenes with the OH radical,” Environmental Science and Technology, vol. 36, no. 9, pp. 1947–1952, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. K. H. Wammer and C. A. Peters, “Polycyclic aromatic hydrocarbon biodegradation rates: A Structure-based Study,” Environmental Science and Technology, vol. 39, no. 8, pp. 2571–2578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. H. Wammer and C. A. Peters, “A molecular modeling analysis of polycyclic aromatic hydrocarbon biodegradation by naphthalene dioxygenase,” Environmental Toxicology and Chemistry, vol. 25, no. 4, pp. 912–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Librando and A. Alparone, “Electronic polarizability as a predictor of biodegradation rates of dimethylnaphthalenes. An ab initio and density functional theory study,” Environmental Science and Technology, vol. 41, no. 5, pp. 1646–1652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Alparone and V. Librando, “Raman DFT study of dimethylnaphthalenes: isomer identification and prediction of biodegradation rate coefficients,” Structural Chemistry, vol. 23, pp. 1467–1474, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Librando and A. Alparone, “Structure, vibrational properties and polarizabilities of methylnaphthalene isomers. A quantum-mechanical approach,” Polycyclic Aromatic Compounds, vol. 27, no. 1, pp. 65–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. S. Salafsky, “Second-harmonic generation as a probe of conformational change in molecules,” Chemical Physics Letters, vol. 381, no. 5-6, pp. 705–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Sliwa, K. Nakatani, T. Asahi, P. G. Lacroix, R. B. Pansu, and H. Masuhara, “Polarization and wavelength dependent nonlinear optical properties of a photo-switchable organic crystal,” Chemical Physics Letters, vol. 437, no. 4–6, pp. 212–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sliwa, S. Létard, I. Malfant et al., “Design, synthesis, structural and nonlinear optical properties of photochromic crystals: toward reversible molecular switches,” Chemistry of Materials, vol. 17, no. 18, pp. 4727–4735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Alparone, “Dipole (hyper)polarizabilities of fluorinated benzenes: an ab initio investigation,” Journal of Fluorine Chemistry, vol. 144, pp. 94–101, 2012. View at Google Scholar
  21. G. J. M. Velders, J.-M. Gillet, P. J. Becker, and D. Feil, “Electron density analysis of nonlinear optical materials. An ab initio study of different conformations of benzene derivatives,” Journal of Physical Chemistry, vol. 95, no. 22, pp. 8601–8608, 1991. View at Google Scholar · View at Scopus
  22. E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J. L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” Journal of the American Chemical Society, vol. 117, no. 12, pp. 3547–3555, 1995. View at Google Scholar · View at Scopus
  23. A. Alparone, A. Millefiori, and S. Millefiori, “Electronic dipole polarizability and hyperpolarizability of formic acid,” Chemical Physics Letters, vol. 409, no. 4-6, pp. 288–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Niewodniczański and W. Bartkowiak, “Theoretical study of geometrical and nonlinear optical properties of pyridinum N-phenolate betaine dyes,” Journal of Molecular Modeling, vol. 13, no. 6-7, pp. 793–800, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Z.-M. Su, H.-L. Xu, Z.-R. Li, S. Muhammad, F. L. Gu, and K. Harigaya, “Knot-isomers of möbius cyclacene: How does the number of knots influence the structure and first hyperpolarizability,” Journal of Physical Chemistry C, vol. 113, no. 34, pp. 15380–15383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Plaquet, B. Champagne, F. Castet et al., “Theoretical investigation of the dynamic first hyperpolarizability of DHA-VHF molecular switches,” New Journal of Chemistry, vol. 33, no. 6, pp. 1349–1356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Lipiński and W. Bartkowiak, “Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations,” Chemical Physics, vol. 245, no. 1-3, pp. 263–276, 1999. View at Google Scholar · View at Scopus
  28. J. Perrenoud-Rinuy, P.-F. Brevet, and H. H. Girault, “Second harmonic generation study of myoglobin and hemoglobin and their protoporphyrin IX chromophore at the water/1,2-dichloroethane interface,” Physical Chemistry Chemical Physics, vol. 4, no. 19, pp. 4774–4781, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. Mitchell and R. A. McAloney, “Second harmonic optical activity of tryptophan derivatives adsorbed at the air/water interface,” Journal of Physical Chemistry B, vol. 108, no. 3, pp. 1020–1029, 2004. View at Google Scholar · View at Scopus
  30. J. S. Salafsky, “Second-harmonic generation for studying structural motion of biological molecules in real time and space,” Physical Chemistry Chemical Physics, vol. 9, no. 42, pp. 5704–5711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophysical Journal, vol. 88, no. 2, pp. 1377–1386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. W.-L. Chen, T.-H. Li, P.-J. Su et al., “Second harmonic generation χ tensor microscopy for tissue imaging,” Applied Physics Letters, vol. 94, no. 18, Article ID 183902, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Champagne, E. A. Perpète, S. J. A. Van Gisbergen et al., “Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: an ab initio investigation of polyacetylene chains,” Journal of Chemical Physics, vol. 109, no. 23, pp. 10489–10498, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kamiya, H. Sekino, T. Tsuneda, and K. Hirao, “Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method,” Journal of Chemical Physics, vol. 122, no. 23, Article ID 234111, 10 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Sekino, Y. Maeda, M. Kamiya, and K. Hirao, “Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction,” Journal of Chemical Physics, vol. 126, no. 1, Article ID 014107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters, vol. 393, no. 1–3, pp. 51–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Alparone, “Linear and nonlinear optical properties of nucleic acid bases,” Chemical Physics, vol. 410, pp. 90–98, 2013. View at Google Scholar
  38. D. Jacquemin, E. A. Perpète, G. Scalmani, M. J. Frisch, R. Kobayashi, and C. Adamo, “Assessment of the efficiency of long-range corrected functionals for some properties of large compounds,” Journal of Chemical Physics, vol. 126, no. 14, Article ID 144105, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. P. A. Limacher, K. V. Mikkelsen, and H. P. Lüthi, “On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional,” Journal of Chemical Physics, vol. 130, no. 19, Article ID 194114, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Nakano, T. Minami, H. Fukui et al., “Approximate spin-projected spin-unrestricted density functional theory method: application to the diradical character dependences of the (hyper)polarizabilities in p-quinodimethane models,” Chemical Physics Letters, vol. 501, no. 1-3, pp. 140–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Alparone, “Comparative study of CCSD(T) and DFT methods: electronic (hyper)polarizabilities of glycine,” Chemical Physics Letters, vol. 514, no. 1–3, pp. 21–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C.-C. Zhang, H.-L. Xu, Y.-Y. Hu, S.-L. Sun, and Z.-M. Su, “Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-acenes salt (n = 1, 2, 3, and 4),” Journal of Physical Chemistry A, vol. 115, no. 10, pp. 2035–2040, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Pluta, M. Kolaski, M. Medved’, and S. Budzák, “Dipole moment and polarizability of the low-lying excited states of uracil,” Chemical Physics Letters, vol. 546, pp. 24–29, 2012. View at Google Scholar
  44. M. Medved, Š. Budzák, and T. Pluta, “Static NLO responses of fluorinated polyacetylene chains evaluated with long-range corrected density functionals,” Chemical Physics Letters, vol. 515, no. 1–3, pp. 78–84, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Alparone, “Evolution of electric dipole (hyper)polarizabilities of b-strand polyglycine single chains: an ab initio and DFT theoretical study,” Journal of Physical Chemistry A, vol. 117, pp. 5184–5194, 2013. View at Google Scholar
  46. A. Alparone, “The effect of secondary structures on the NLO properties of single chain oligopeptides: a comparison between β-strand and α-helix polyglycines,” Physical Chemistry Chemical Physics, vol. 15, pp. 12958–12962, 2013. View at Google Scholar
  47. A. Alparone, “Electron correlation effects and density analysis of the first-order hyperpolarizability of neutral guanine tautomers,” Journal of Molecular Modeling, vol. 19, pp. 3095–3102, 2013. View at Google Scholar
  48. A. Alparone, “Response electric properties of α-helix polyglycines: a CAM-B3LYP DFT investigation,” Chemical Physics Letters, vol. 563, pp. 88–92, 2013. View at Google Scholar
  49. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., “Gaussian 09, Revision A.02,” Gaussian, Wallingford, Conn, USA, 2009.
  50. H. Sekino and R. J. Bartlett, “Frequency dependent nonlinear optical properties of molecules,” The Journal of Chemical Physics, vol. 85, no. 2, pp. 976–989, 1986. View at Google Scholar · View at Scopus
  51. J. E. Rice and N. C. Handy, “The calculation of frequency-dependent hyperpolarizabilities including electron correlation-effects,” International Journal of Quantum Chemistry, vol. 43, pp. 91–118, 1992. View at Google Scholar
  52. V. Librando, A. Alparone, and Z. Minniti, “Computational study on dipole moment, polarizability and second hyperpolarizability of nitronaphthalenes,” Journal of Molecular Structure, vol. 856, no. 1–3, pp. 105–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Torrent-Sucarrat, M. Solà, M. Duran, J. M. Luis, and B. Kirtman, “Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules,” Journal of Chemical Physics, vol. 118, no. 2, pp. 711–718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Alparone and V. Librando, “Physicochemical characterization of environmental mutagens: 3-nitro-6-azabenzo[a]pyrene and its N-oxide derivative,” Monatshefte für Chemie, vol. 143, pp. 1123–1132, 2012. View at Google Scholar
  55. I. Černušák, V. Kello, and A. J. Sadlej, “Standardized medium-size basis sets for calculations of molecular electric properties: group IIIA,” Collection of Czechoslovak Chemical Communications, vol. 68, no. 2, pp. 211–239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Keshari, W. M. K. P. Wijekoon, P. N. Prasad, and S. P. Karna, “Hyperpolarizabilities of organic molecules: Ab initio time-dependent coupled perturbed Hartree—Fock—Roothaan studies of basic heterocyclic structures,” Journal of Physical Chemistry, vol. 99, no. 22, pp. 9045–9050, 1995. View at Google Scholar · View at Scopus
  57. J. E. Rice, R. D. Amos, S. M. Colwell, N. C. Handy, and J. Sanz, “Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride,” The Journal of Chemical Physics, vol. 93, no. 12, pp. 8828–8839, 1990. View at Google Scholar · View at Scopus
  58. H. Sekino and R. J. Bartlett, “Molecular hyperpolarizabilities,” Journal of Chemical Physics, vol. 98, no. 4, pp. 3022–3037, 1993. View at Google Scholar · View at Scopus
  59. F. Sim, S. Chin, M. Dupuis, and J. E. Rice, “Electron correlation effects in hyperpolarizabilities of p-nitroaniline,” Journal of Physical Chemistry, vol. 97, no. 6, pp. 1158–1163, 1993. View at Google Scholar · View at Scopus
  60. G. Maroulis and A. J. Thakkar, “Polarizabillties and hyperpolarizabilities of F2,” The Journal of Chemical Physics, vol. 90, no. 1, pp. 366–370, 1989. View at Google Scholar · View at Scopus
  61. E. F. Archibong and A. J. Thakkar, “Hyperpolarizabilities and polarizabilities of Li-1 and B+: finite-field coupled-cluster calculations,” Chemical Physics Letters, vol. 173, no. 5-6, pp. 579–584, 1990. View at Google Scholar · View at Scopus
  62. E. F. Archibong and A. J. Thakkar, “Static polarizabilities and hyperpolarizabilities, and multipole moments for Cl2 and Br2. Electron correlation and molecular vibration effects,” Chemical Physics Letters, vol. 201, no. 5-6, pp. 485–492, 1993. View at Google Scholar · View at Scopus
  63. G. Maroulis, “Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects,” Chemical Physics Letters, vol. 289, no. 3-4, pp. 403–411, 1998. View at Google Scholar · View at Scopus
  64. D. Xenides and G. Maroulis, “Basis set and electron correlation effects on the first and second static hyperpolarizability of SO2,” Chemical Physics Letters, vol. 319, no. 5-6, pp. 618–624, 2000. View at Google Scholar · View at Scopus
  65. H. A. Kurtz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of molecules,” Journal of Computational Chemistry, vol. 11, pp. 82–87, 1990. View at Google Scholar
  66. D. M. Bishop and G. Maroulis, “Accurate prediction of static polarizabilities and hyperpolarizabilities. A study on FH (X1Σ+),” The Journal of Chemical Physics, vol. 82, no. 5, pp. 2380–2391, 1985. View at Google Scholar · View at Scopus
  67. J. E. Rice and N. C. Handy, “The calculation of frequency-dependent polarizabilities as pseudo-energy derivatives,” The Journal of Chemical Physics, vol. 94, no. 7, pp. 4959–4971, 1991. View at Google Scholar · View at Scopus
  68. J. R. Hammond, K. Kowalski, and W. A. Dejong, “Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory,” Journal of Chemical Physics, vol. 127, no. 14, Article ID 144105, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Alparone, “Structural, energetic and response electric properties of cyclic selenium clusters: an ab initio and density functional theory study,” Theoretical Chemistry Accounts, vol. 131, article 1239, pp. 1–14, 2012. View at Google Scholar
  70. M. F. Vuks, “Determination of optical anisotropy of aromatic molecules from double refraction in crystals,” Optics Spectroscopy, vol. 20, pp. 361–368, 1966. View at Google Scholar
  71. M. Nakano, I. Shigemoto, S. Yamada, and K. Yamaguchi, “Size-consistent approach and density analysis of hyperpolarizability: second hyperpolarizabilities of polymeric systems with and without defects,” The Journal of Chemical Physics, vol. 103, no. 10, pp. 4175–4191, 1995. View at Google Scholar · View at Scopus
  72. M. Nakano, S. Ohta, K. Tokushima et al., “First and second hyperpolarizabilities of donor-acceptor disubstituted diphenalenyl radical systems,” Chemical Physics Letters, vol. 443, no. 1–3, pp. 95–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Mora-Diez, R. J. Boyd, and G. L. Heard, “Effects of alkyl substituents on the excited states of naphthalene: Semiempirical Study,” Journal of Physical Chemistry A, vol. 104, no. 5, pp. 1020–1029, 2000. View at Google Scholar · View at Scopus
  74. S. Yamada, M. Nakano, I. Shigemoto, S. Kiribayashi, and K. Yamaguchi, “Intense electron correlation dependence of the first hyperpolarizabilities β of a nitroxide radical and formaldehyde,” Chemical Physics Letters, vol. 267, no. 5-6, pp. 445–451, 1997. View at Google Scholar · View at Scopus