Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 840376, 6 pages
http://dx.doi.org/10.1155/2013/840376
Research Article

Determination of Decabrominated Diphenyl Ether in Soils by Soxhlet Extraction and High Performance Liquid Chromatography

1School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
3School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Received 7 August 2013; Accepted 24 September 2013

Academic Editors: J. Jia and M. J. La Guardia

Copyright © 2013 Xing-Jian Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Kemmlein, O. Hahn, and O. Jann, “Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials,” Atmospheric Environment, vol. 37, no. 39-40, pp. 5485–5493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. W. C. Kuiyla and A. J. Papa, Flame Retardants in Polymeric Materials, Marcel Dekker, New York, NY, USA.
  3. M. Alaee, P. Arias, A. Sjödin, and Å. Bergman, “An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release,” Environment International, vol. 29, no. 6, pp. 683–689, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. G. Ikonomou, S. Rayne, and R. F. Addison, “Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000,” Environmental Science and Technology, vol. 36, no. 9, pp. 1886–1892, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. V. T. Coalition and B. A. Network, Exporting Harm: the High-Tech Trashing of Asia, The Basel Action Network, Seattle, Wash, USA, 2002.
  6. D. Chen, X. Bi, J. Zhao et al., “Pollution characterization and diurnal variation of PBDEs in the atmosphere of an E-waste dismantling region,” Environmental Pollution, vol. 157, no. 3, pp. 1051–1057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Williams, R. Kahhat, B. Allenby, E. Kavazanjian, J. Kim, and M. Xu, “Environmental, social, and economic implications of global reuse and recycling of personal computers,” Environmental Science and Technology, vol. 42, no. 17, pp. 6446–6454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. O. W. Leung, W. J. Luksemburg, A. S. Wong, and M. H. Wong, “Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China,” Environmental Science and Technology, vol. 41, no. 8, pp. 2730–2737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Guo, C. Huang, H. Zhang, and Q. Dong, “Heavy metal contamination from electronic waste recycling at Guiyu, southeastern China,” Journal of Environmental Quality, vol. 38, no. 4, pp. 1617–1626, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. O. W. Leung, J. Zheng, C. K. Yu et al., “Polybrominated diphenyl ethers and polychlorinated dibenzo-P-dioxins and dibenzofurans in surface dust at an E-waste processing site in southeast China,” Environmental Science and Technology, vol. 45, no. 13, pp. 5775–5782, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, C. Luo, J. Li, H. Yin, X. Li, and G. Zhang, “Characterization of PBDEs in soils and vegetations near an e-waste recycling site in South China,” Environmental Pollution, vol. 159, no. 10, pp. 2443–2448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Söderström, U. Sellström, C. A. De Wit, and M. Tysklind, “Photolytic debromination of decabromodiphenyl ether (BDE 209),” Environmental Science and Technology, vol. 38, no. 1, pp. 127–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M.-Y. Ahn, T. R. Filley, C. T. Jafvert, L. Nies, I. Hua, and J. Bezares-Cruz, “Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment,” Environmental Science and Technology, vol. 40, no. 1, pp. 215–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Eriksson, N. Green, G. Marsh, and Å. Bergman, “Photochemical decomposition of 15 polybrominated diphenyl ether congeners in methanol/water,” Environmental Science and Technology, vol. 38, no. 11, pp. 3119–3125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. A. C. Gerecke, P. C. Hartmann, N. V. Heeb et al., “Anaerobic degradation of decabromodiphenyl ether,” Environmental Science and Technology, vol. 39, no. 4, pp. 1078–1083, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kierkegaard, L. Balk, U. Tjärnlund, C. A. De Wit, and B. Jansson, “Dietary uptake and biological effects of decabromodiphenyl ether in rainbow trout (Oncorhynchus mykiss),” Environmental Science and Technology, vol. 33, no. 10, pp. 1612–1617, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. H. M. Stapleton, B. Brazil, R. D. Holbrook et al., “In vivo and in vitro debromination of decabromodiphenyl ether (BDE 209) by juvenile rainbow trout and common carp,” Environmental Science and Technology, vol. 40, no. 15, pp. 4653–4658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Wang and Q. X. Li, “Application of mass spectrometry in the analysis of polybrominated diphenyl ethers,” Mass Spectrometry Reviews, vol. 29, no. 5, pp. 737–775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Li, D. Ren, G. Du et al., “Accumulation of polybrominated diphenyl ethers (PBDEs) in mudsnails (Cipangopaludina cahayensis) did not increase with age,” Bulletin of Environmental Contamination and Toxicology, vol. 91, pp. 1–5, 2013. View at Google Scholar
  20. K. Kalachova, P. Hradkova, D. Lankova et al., “Occurrence of brominated flame retardents in household and car dust from the Crezh Republic,” Science of the Total Environment, vol. 441, pp. 182–193.
  21. Y. Li, T. Lin, Y. Chen et al., “Polybrominated diphenyl ethers (PBDEs) in sediments of coastal East China sea: occurrence, distribution and mass inventory,” Environmental Pollution, vol. 171, pp. 155–161.
  22. Y. Li, J. Hu, X. Liu, L. Fu, X. Zhang, and X. Wang, “Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water,” Journal of Separation Science, vol. 31, no. 13, pp. 2371–2376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Liu, M. Zhang, X. Wang et al., “Extraction and determination of polybrominated diphenyl ethers in water and urine samples using solidified floating organic drop microextraction along with high performance liquid chromatography,” Microchimica Acta, vol. 176, no. 3-4, pp. 303–309, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Mingwu, W. Chao, J. Yongjuan, D. Xinhua, and F. Xiang, “Determination of selected polybrominated diphenylethers and polybrominated biphenyl in polymers by ultrasonic-assisted extraction and high-performance liquid chromatography-inductively coupled plasma mass spectrometry,” Analytical Chemistry, vol. 82, no. 12, pp. 5154–5159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Braekevelt, S. A. Tittlemier, and G. T. Tomy, “Direct measurement of octanol-water partition coefficients of some environmentally relevant brominated diphenyl ether congeners,” Chemosphere, vol. 51, no. 7, pp. 563–567, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Gao, J. Hong, Z. Yu et al., “Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory,” Environmental Toxicology and Chemistry, vol. 30, no. 12, pp. 2688–2696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. H. Wong, S. C. Wu, W. J. Deng et al., “Export of toxic chemicals—a review of the case of uncontrolled electronic-waste recycling,” Environmental Pollution, vol. 149, no. 2, pp. 131–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. F. D. Wu and Q. H. Zhang, Chromatographic Instrument Maintenance and Trouble Removal, Chemical Industry Press, Beijing, China, 2008.
  29. Y. Luo, X.-J. Luo, Z. Lin et al., “Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: Concentrations, source profiles, and potential dispersion and deposition,” Science of the Total Environment, vol. 407, no. 3, pp. 1105–1113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Liu, B. Huang, X. Bi et al., “Heavy metals and organic compounds contamination in soil from an e-waste region in South China,” Environmental Science: Processes & Impacts, vol. 15, pp. 919–929, 2013. View at Google Scholar
  31. I. Labunska, S. Harrad, D. Santillo et al., “Levels and distribution of polybrominated diphenyl ethers in soil, sediment and dust samples collected from various electronic waste recycling sites within Guiyu towm, Southeast China,” Environmental Science: Processes & Impacts, vol. 15, pp. 503–511, 2013. View at Google Scholar
  32. L. Liu, W. Zhu, L. Xiao, and L. Yang, “Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition,” Journal of Hazardous Materials, vol. 186, no. 1, pp. 883–890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Wu, X. Xu, J. Liu, Y. Guo, Y. Li, and X. Huo, “Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China,” Environmental Science and Technology, vol. 44, no. 2, pp. 813–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Huang, S. Zhang, and P. Christie, “Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites,” Environmental Pollution, vol. 159, no. 1, pp. 238–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Huang, S. Zhang, P. Christie, S. Wang, and M. Xie, “Behavior of Decabromodiphenyl Ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil,” Environmental Science and Technology, vol. 44, no. 2, pp. 663–667, 2010. View at Publisher · View at Google Scholar · View at Scopus