Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 857586, 9 pages
http://dx.doi.org/10.1155/2013/857586
Research Article

Performance Evaluation and Microstructure Characterization of Metakaolin-Based Geopolymer Containing Oil Palm Ash

1Department of Civil Engineering, Prince of Songkla University, Songkhla 90112, Thailand
2Department of Mining and Materials Engineering, Prince of Songkla University, Songkhla 90112, Thailand

Received 12 August 2013; Accepted 16 September 2013

Academic Editors: V. Amigó and F. Pacheco Torgal

Copyright © 2013 Abideng Hawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-G. Hu, J. Wu, W. Yang, Y.-J. He, F.-Z. Wang, and Q.-J. Ding, “Preparation and properties of geopolymer-lightweight aggregate refractory concrete,” Journal of Central South University of Technology, vol. 16, no. 6, pp. 914–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Lloyd, “Accelerated ageing of geopolymers,” in Geopolymers: Structure, Processing, Properties and Industrial Applications, Provis and Van Deventer, Eds., pp. 139–166, CRC Press, 2009. View at Google Scholar
  3. F. Skavara, V. Smilauer, P. Hlavacek, L. Kopecky, and Z. Cilova, “A weak alkali bond in (K,K)-A-S-H Gels: evidence from leaching and modeling,” Ceramics-Silikaty, vol. 56, no. 4, pp. 374–382, 2012. View at Google Scholar
  4. F. Pacheco-Torgal, Z. Abdollahnejad, A. F. Camões, M. Jamshidi, and Y. Ding, “Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue?” Construction and Building Materials, vol. 30, pp. 400–405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. L. K. Turner and F. G. Collins, “Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete,” Construction and Building Materials, vol. 43, pp. 125–130, 2013. View at Google Scholar
  6. P. D. Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, “Kinetics of geopolymerization: role of Al2O3 and SiO2,” Cement and Concrete Research, vol. 37, no. 4, pp. 512–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. De Silva and K. Sagoe-Crenstil, “Medium-term phase stability of Na2O-Al2O3-SiO2-H2O geopolymer systems,” Cement and Concrete Research, vol. 38, no. 6, pp. 870–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Chindaprasirt, P. D. Silva, K. Sagoe-Crenstil, and S. Hanjitsuwan, “Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems,” Journal of Materials Science, vol. 47, no. 12, pp. 4876–4883, 2012. View at Google Scholar
  9. J. G. S. van Jaarsveld, J. S. J. van Deventer, and G. C. Lukey, “The characterisation of source materials in fly ash-based geopolymers,” Materials Letters, vol. 57, no. 7, pp. 1272–1280, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. V. F. F. Barbosa, K. J. D. Mackenzie, and C. Thaumaturgo, “Synthesis and characterization of sodium polysialate inorganic polymer based on alumina and silica,” in Proceedings of the Geopolymer International Conference (Geopolymer '99), pp. 65–77, 1999.
  11. F. J. Silva, A. F. Mathias, and C. Thaumatugo, “Evaluation of the fracture toughnes in poly(sialate-siloxo) composite matrix,” in Proceedings of the Geopolymer International Conference (Geopolymer '99), pp. 97–106, 1999.
  12. Z.-H. Zhang, X. Yao, H.-J. Zhu, S.-D. Hua, and Y. Chen, “Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer,” Journal of Central South University of Technology, vol. 16, no. 1, pp. 49–52, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. ASTM 109/C109M, Standard Test Method for Compressive Strength of Hydraulic CementMortar (Using 2-in. Or [50-Mm] Cube Specimens), American Society for Testing and Materials, 1998.
  14. ASTM C490, Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete, American Society for Testing and Materials, 1996.
  15. P. Rovnaník, “Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer,” Construction and Building Materials, vol. 24, no. 7, pp. 1176–1183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Temuujin, A. van Riessen, and R. Williams, “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes,” Journal of Hazardous Materials, vol. 167, no. 1–3, pp. 82–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Chareera, A study of compressive strength and durability of Mae Moh fly ash geopolymer [Ph.D. thesis], Khon Kaen Univerity, Khon Kaen, Thailand, 2008.
  18. Z. Zuhua, Y. Xiao, Z. Huajun, and C. Yue, “Role of water in the synthesis of calcined kaolin-based geopolymer,” Applied Clay Science, vol. 43, no. 2, pp. 218–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Álvarez-Ayuso, X. Querol, F. Plana et al., “Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 175–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. M. Al Bakri, H. Kamarudin, M. Bnhussian, A. R. Rafiza, and Y. Zarina, “Effect of Na2SiO3/NaOH ratios and NaOH molarities on compressive strength of fly ash-based geopolymer,” ACI Materials Journal, vol. 109, no. 48, pp. 503–508, 2012. View at Google Scholar
  21. Y. Zhang, W. Sun, and Z. Li, “Infrared spectroscopy study of structural nature of geopolymeric products,” Journal Wuhan University of Technology, Materials Science Edition, vol. 23, no. 4, pp. 522–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Y. Yin, S. A. S. A. Kadir, Y. P. Lim, S. N. Syed-Ariffin, and Z. Zamzuri, “An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass wastein a boiler,” Fuel Processing Technology, vol. 89, no. 7, pp. 693–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. L. Frost and A. M. Vassallo, “The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy,” Clays and Clay Minerals, vol. 44, no. 5, pp. 635–651, 1996. View at Google Scholar · View at Scopus
  24. M. L. Granizo, M. T. Blanco-Varela, and S. Martínez-Ramírez, “Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties,” Journal of Materials Science, vol. 42, no. 9, pp. 2934–2943, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Wang, H. Li, and F. Yan, “Synthesis and mechanical properties of metakaolinite-based geopolymer,” Colloids and Surfaces A, vol. 268, no. 1–3, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Ismail, S. A. Bernal, J. L. Provis, S. Hamdan, and J. S. J. van Deventer, “Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure,” Materials and Structure, vol. 46, no. 3, pp. 361–373, 2013. View at Google Scholar