The Scientific World Journal

The Scientific World Journal / 2013 / Article

Review Article | Open Access

Volume 2013 |Article ID 875363 | https://doi.org/10.1155/2013/875363

Antonella Galeone, Domenico Paparella, Silvia Colucci, Maria Grano, Giacomina Brunetti, "The Role of TNF-α and TNF Superfamily Members in the Pathogenesis of Calcific Aortic Valvular Disease", The Scientific World Journal, vol. 2013, Article ID 875363, 10 pages, 2013. https://doi.org/10.1155/2013/875363

The Role of TNF-α and TNF Superfamily Members in the Pathogenesis of Calcific Aortic Valvular Disease

Academic Editor: I. Misumi
Received29 Aug 2013
Accepted02 Oct 2013
Published06 Nov 2013

Abstract

Calcific aortic valve disease (CAVD) represents a slowly progressive pathologic process associated with major morbidity and mortality. The process is characterized by multiple steps: inflammation, fibrosis, and calcification. Numerous studies focalized on its physiopathology highlighting different “actors” for the multiple “acts.” This paper focuses on the role of the tumor necrosis factor superfamily (TNFSF) members in the pathogenesis of CAVD. In particular, we discuss the clinical and experimental studies providing evidence of the involvement of tumor necrosis factor-alpha (TNF-α), receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), its membrane receptor RANK and its decoy receptor osteoprotegerin (OPG), and TNF-related apoptosis-inducing ligand (TRAIL) in valvular calcification.

1. Introduction

Calcific aortic valve disease (CAVD) represents a slowly progressive pathologic process extending from mild thickening of the aortic valve without obstruction of blood flow, named aortic valve sclerosis, to a severe calcification of valvular leaflets, reduction of valve motion, and obstruction of blood flow, named aortic stenosis (AS) [1]. AS is the most common among heart valve diseases (43.1%) [2]; its prevalence is around 2%, and it increases with age [35]. Degenerative etiology is predominant (81.9%) [2]; however, CAVD can no longer be considered a passive process in which the valve degenerates with age in association with calcium accumulation. Instead, CAVD appears to be an actively regulated process including chronic inflammation, lipoprotein deposition, renin-angiotensin system involvement, extracellular matrix (ECM) remodeling, and activation of specific osteogenic signaling pathways and apoptosis, which determine the activation and differentiation of the resident fibroblasts or quiescent valvular interstitial cells (qVICs) into myofibroblasts (activated VICs, aVICs) and osteoblast-like cells (osteoblastic VICs, obVICs) with consequent micro- and macrocalcification [68] (Figure 1).

Inflammation is a prominent feature of aortic valve calcification, and it is present in both early and advanced aortic valvular lesions [9, 10]. Histological and immunohistochemical studies showed that early valvular lesions are characterized by a subendothelial thickening of the aortic side of the leaflet with presence of intra- and extracellular lipids and microscopic calcification, as well as interruption of the basement membrane with accumulation of lipids and calcium also in the fibrosa [10]. These lesions are probably consequent to the disruption of the endothelial continuity due to an elevated shear stress, which allows circulating lipids, including low-density lipoprotein (LDL) and lipoprotein (a), to enter the valvular interstitial tissue [11] where they undergo oxidative modification [12]. These oxidized lipoproteins (oxLDL) are highly cytotoxic and capable of stimulating inflammatory activity and mineralization. Valvular endothelial dysfunction or injury also leads to increased expression of adhesion molecules VCAM-1, ICAM-1, and E-selectin and recruitment of inflammatory cells [13]. Normal aortic valves present scattered macrophages and sporadic alpha-actin-positive cells, while T-cells are absent; conversely, early valvular lesions are characterized by an inflammatory infiltrate composed of macrophages (foam cells and nonfoam cells) and T cells and scattered alpha-actin-positive cells [10]. Thus, early lesions of CAVD have some similarities with the atherosclerotic process (lipid accumulation, inflammatory infiltrate, and interruption of the basement membrane) and some differences (presence of early calcification and reduced number of smooth muscle cells). Leukocytes activated in the subendothelium and in the fibrosa induce a chronic inflammation with release of cytokines and enzymes as IL-2 [9], transforming growth factor- (TGF-) 1 [7], IL-1 [14], TNF-α [15], and matrix metalloproteinases (MMPs) [16], which contribute to ECM remodeling, inflammatory activation of myofibroblasts which, in turn, develop an osteoblast-like phenotype, and calcification. Mineralization arises in close proximity to areas of inflammation and has been demonstrated in early [10] as well as advanced lesions [17]. Several features suggest the presence of an active highly regulated process closely resembling developmental bone formation [18, 19]. In vitro studies of cultured explants of stenotic valves have identified cells with osteoblastic characteristics that undergo phenotypic differentiation and spontaneous calcification [20]. These osteogenic cells express and produce a variety of regulatory bone matrix proteins including osteopontin (OPN) [21, 22] and bone morphogenetic proteins (BMPs) [17]. The initiation of mineralization (nucleation) may be stimulated by the presence of oxLDL [12, 17] or by the presence of cellular degradation products following apoptosis [8].

This paper focuses on the role of the tumor necrosis factor superfamily (TNFSF) members in the pathogenesis of CAVD. The TNFSF is composed of 19 ligands and 29 receptors and plays highly diversified roles in the body [23]. In particular, we discuss the clinical and experimental studies providing evidence of the involvement of tumor necrosis factor-alpha (TNF-α), receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL), its membrane receptor RANK and its decoy receptor osteoprotegerin (OPG), and TNF-related apoptosis-inducing ligand (TRAIL) in valvular calcification.

2. TNF-α

Tumor necrosis factor-alpha or TNF-α maps to chromosome 6p21.3 and is primarily produced as a 212-amino-acid-long type II transmembrane protein arranged in stable homotrimers [24, 25]. From this membrane-integrated form, the soluble homotrimeric cytokine (sTNF) is released via proteolytic cleavage by the metalloprotease TNF-α-converting enzyme (TACE) [26].

TNF-α is produced by different kinds of cells, including activated macrophages, monocytes, T-cells, smooth muscle cells, adipocytes, and fibroblasts. The cytokine is involved in acute and/or chronic inflammation. Whereas, in acute inflammation, TNF-α protects against bacterial endotoxin, viruses, and parasites, provides increased nutrients for immune cells, and favors a proper host response, in chronic inflammation, TNF-α activates pathways responsible for numerous pathological conditions, such as arthritis. In fact, molecules neutralizing it are beneficial in the treatment of diseases. TNF-α was aptly named when it was discovered to induce tumor cell apoptosis [27], or programmed cell death. In general, TNF-α promotes several cell functions related to immune cell proliferation and adhesion and apoptosis [23, 28].

TNF-α can induce biological reactions by either TNF receptor 1 (TNFR1) or TNFR2: the first, which contains a death domain (DD), is highly promiscuous and is expressed on every cell type in the body, whereas the expression of the second receptor is limited to cells of the immune system, endothelial cells, and nerve cells. Each receptor can mediate distinct intracellular signals. In particular, TNF-α induces at least 5 different types of signals that include activation of NF-κB, apoptosis pathways, extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK), and c-Jun N-terminal kinase (JNK). When TNF-α binds to TNFR1, it recruits a protein called TNFR-associated death domain (TRADD) through its DD [29]. TRADD then recruits a protein called Fas-associated protein with death domain (FADD), which then sequentially activates caspase-8, caspase-3, and, thus, apoptosis [30]. Alternatively, TNF-α can activate mitochondria to sequentially release ROS, cytochrome C, and Bax, leading to activation of caspase-9, caspase-3, and, thus, apoptosis [31].

TNF-α has also been shown to activate NF-κB, which, in turn, regulates the expression of proteins associated with cell survival and proliferation [32].  For NF-κB activation, the intracellular domain of TNFR1 is bound by an adaptor protein, TNF receptor-associated death domain (TRADD), which mobilizes additional adaptor protein receptor interacting protein-1 (RIP-1), and TRAF2 [33]. Subsequently, the TRADD-RIP-1-TRAF2 complex is released from TNFR1. The adapter proteins in the complex activate key signaling pathways. RIP-1 recruitment of MAPK extracellular signal-regulated kinase kinase-3 (MEKK3) and TGF-β-activated kinase (TAK1) activates the IκB kinase (IKK) complex. The IKK complex phosphorylates IκBα that ubiquitinates and degrades IκBα. This subsequently releases NF-κB subunits, which translocate into the nucleus and promote gene transcription [3436]. The proinflammatory effect of TNF-α is mediated through NF-κB-regulated proteins, such as IL-6, IL-8, IL-18, chemokines, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX), all major mediators of inflammation. Indeed, TNF-α can induce expression of TNF-α itself through activation of NF-κB [37].

TNF-α can also activate cellular proliferation through activation of another transcription factor, activator protein-1 (AP-1) [38], which is activated by TNF-α through sequential recruitment of TNFR1, TRADD, TRAF2, MAP/ERK kinase kinase-1 (MEKK1), MAP kinase kinase-7 (MKK7), and JNK. The activation of p38MAPK by TNF-α is mediated through TRADD-TRAF2-MKK3. How TNFR2, which lacks a DD, activates cell signaling is much less clear than how TNFR1 activates cell signaling. Since TNFR2 can directly bind to TRAF2, it can activate both NF-κB and MAPK signaling.

Although initially discovered as an anticancer agent, TNF-α and its family members have now been linked to an array of pathophysiologies, including cancer, neurologic, pulmonary, autoimmune, metabolic, and cardiovascular diseases [3947].

TNF-α in CAVD. Demer first identified that TNF-α may participate in vascular calcification, upregulating alkaline phosphate (ALP) activity as a necessary component of calcifying vascular cell mineralization in vitro [48]. Thereafter, the role of TNF-α in the pathogenesis of aortic valvular calcification has been gradually elucidated; TNF-α is a pleiotropic cytokine which induces ECM remodeling [49], cell proliferation and differentiation [15], and calcification [50]. Kaden showed that TNF-α is expressed by macrophages in calcific aortic valves and it stimulates in vitro proliferation of human valvular myofibroblasts as well as their expression of MMP-1 [49]; normal valves present rare macrophages and low expression of TNF-α, MMP-1; conversely, calcific aortic valves present inflammatory infiltrate and colocalized expression of TNF-α, MMP-1 [49]. Aortic valve calcification is associated with an osteoblast-like phenotype of local myofibroblasts and is actively regulated by an inflammatory process involving TNF-α. Upon stimulation with TNF-α, human aortic valve myofibroblasts cultured under mineralizing conditions showed increased formation of calcified, ALP-enriched cell nodules, ALP activity, concentration of the bone-type ALP isoenzyme, and concentration of osteocalcin (OCN), all of which are markers of an osteoblast-like cellular phenotype [15]; by electrophoretic mobility shift assay, DNA binding of the essential osteoblastic transcription factor runx2/cbfa-1 was increased compared to untreated controls [15]. TNF-α increases the gene expression of the osteogenic makers ALP and BMP-2 and induces calcification of VICs obtained from the patients with AS [50]; TNF-α-induced calcification, ALP activation, and NF-κB and BMP-2 gene expression are inhibited in the presence of inhibitors of NF-κB signalling, showing that TNF-α activates the NF-κB signalling pathway and translocates NF-κB p65 subunit into the nucleus for upregulation of the BMP-2 and NF-κB genes [50]. Oxidized lipoproteins have been detected in stenotic aortic valves where they stimulate inflammatory activity [12]; valves with higher oxLDL content had a significantly higher density of inflammatory cells and expression of TNF-α, as well as an increased tissue remodeling [51]. Additional experimental evidences support the important role of TNF-α in CAVD [52]. IL-1 receptor antagonist-deficient (IL-1Ra−/−) mice spontaneously develop AS, and T-cells from IL-1Ra−/− produce much higher levels of TNF-α after anti-CD3 antibody stimulation compared to wild-type mice; furthermore, TNF-α deficiency completely suppressed AS development in IL-1Ra−/− mice, suggesting that TNF-α actively participates in AS development in IL-1Ra−/− mice [52]. Circulating levels of TNF-α are elevated in patients with severe AS and correlate with the severity of the hemodynamic pressure overload; moreover, the peripheral TNF-α and TNF receptor levels increase in direct relation to deteriorating NYHA functional classification [53]. Circulating TNF-α levels reduce progressively, returning to normal 6 months after surgical aortic valve replacement (AVR) [54].

3. RANKL/RANK/OPG

The RANKL/RANK/OPG pathway was initially described in the context of bone mass regulation, but now its prominent role in cardiovascular disease is emerging [55].

RANKL is encoded by a single gene at human chromosome 13q14. Alternative splicing of RANKL mRNA allows expression as a type II transmembrane glycoprotein of either 316 or 270 amino acids or as a soluble ligand of 243 amino acids [56, 57]. In addition, RANKL can be released from its membrane-bound state by metalloproteinases [58, 59]. RANKL is expressed by activated CD4+ and CD8+ T lymphocytes, double-negative thymocytes, immature B lymphocytes, osteoblasts, osteocytes, bone marrow stroma, vascular endothelia, developing lymph node anlage, and developing breast epithelia [56, 6064]. RANKL acts following the binding with RANK which plays a crucial role in bone homeostasis and lymphoid tissue organization [6467]. In particular, RANKL is the master cytokine driving osteoclast differentiation. The strongest evidence for the role of RANKL during osteoclastogenesis came from gene inactivation in murine models [56, 6769], leading to osteoclast-poor osteopetrosis already present at birth. At 1 month of age, RANKL−/− mice were severely growth retarded due to poor nutrition secondary to lack of tooth eruption and displayed shortened long bones with club-shaped ends, thinning of the calvariae, generalized increase in bone density with very little marrow space, marked chondrodysplasia with thick, irregular growth plates, and relative increase in hypertrophic chondrocytes. Moreover, RANKL−/− mice displayed defects in the immunological compartment: reduced thymus size, spleen enlargement, complete lack of lymph nodes, and smaller Peyer’s patches [56, 70, 71].

RANK is a type I transmembrane glycoprotein encoded on human chromosome 18q22.1 and is expressed on the surface of osteoclasts and osteoclast precursors as well as bone-marrow-derived dendritic cells, activated T-cells, vascular endothelia, chondrocytes, bone marrow fibroblasts, and mammary gland epithelia. Each RANKL trimer engages three molecules of RANK. Trimerization triggers a conformational change in the cytoplasmic domain of RANK that allows recruitment of TNFR-associated factors (TRAFs). In particular, TRAF2 and TRAF6 are the most critical for RANK signalling [7274]. TRAF2 mediates activation of AP-1 in concert with ASK1 [75, 76]. TRAF6 makes complexes with c-Src and c-Cbl to activate PI3K, leading to PKB activation and cytoskeletal reorganization [7779]. Moreover, TRAF6 activates microphthalmia transcription factor (MITF) by activating the p38 microtubule-associated protein kinase pathway through TAB2 and TAK1 [80].

OPG, encoded by a single gene on chromosome 8q24, is a soluble, 110 kDa, disulfide-linked, homodimeric glycoprotein that functions as a decoy receptor for RANKL. Thus, OPG modulates osteoclast formation by inhibiting RANK activation [62]. OPG also can bind the TNFSF member TRAIL, and it has been found that OPG inhibits TRAIL-induced apoptosis of Jurkat, LNCaP cells in culture and of osteoclast, and malignant plasma cells in multiple myeloma [8185]. OPG mRNA has been detected in B cells, bone-marrow-derived and follicular dendritic cells, vascular endothelia, VSMCs, heart, lung, kidney, bone, stomach, intestine, placenta, liver, thyroid, skin, spinal cord, and brain [8693].

Transgenic mice expressing OPG exhibited increased bone density, which was explained histologically by a marked decrease in osteoclast number that was presumably due to reduced osteoclast formation [87]. In animals expressing high levels of OPG, the bones were virtually solid, lacking a visible marrow cavity and with nonresorbed cartilage remnants visible histologically within trabeculae [87]. By contrast, mice deficient in OPG developed osteopaenia at an early age owing to increased osteoclast activity, thereby underscoring a physiological role for OPG in the maintenance of normal bone mass [94]. In addition, OPG−/− mice develop arterial calcification, suggesting that OPG plays a role in the maintenance of VSMCs homeostasis [94]. OPG could act as an inhibitor of vascular calcification, whereas RANKL promotes extracellular mineralization of cultured VSMCs via a BMP-4-dependent mechanism [95].

RANKL/RANK/OPG in CAVD. Kaden et al. first showed by immunohistochemistry that RANKL and OPG are differentially expressed in calcific AS. RANKL is present in aortic valves from patients with AS, while it is not expressed at relevant levels in normal valves; conversely, OPG expression is marked in normal valves but significantly lower in AS. Additionally, areas containing focal calcification exhibit significantly less OPG-positive cells as compared to noncalcified regions [96]. Further studies support the concept that RANKL/RANK/OPG system exhibits a differential profile throughout the progression of the disease. In particular, the percentage of cells labeled by OPG, RANK, and NF-κB is increased in sclerotic valves compared with stenotic valves, whereas the frequency of RANKL is higher in stenotic compared to sclerotic valves. As a consequence, the OPG/RANKL ratio is decreased in stenotic compared to sclerotic valves [97]. Other studies showed that there is a progressive increase in the gene expression of OPN, bone sialoprotein II, and OPG in the clinical continuum from healthy valves to heavily calcified ones; conversely, BMP-2 and -4 gene expression is significantly decreased in calcified valves suggesting that the expression of pro- and anticalcific noncollagenous bone-associated matrix proteins is altered during the disease continuum and that this imbalance may contribute to the pathology of CAVD [98]. In cultured human aortic valve myofibroblasts, stimulation with RANKL leads to a significant rise in matrix calcification, nodule formation, ALP activity, expression of the bone-type isoenzyme of ALP, and expression of OCN; moreover, RANKL increased DNA binding of the essential osteoblast transcription factor runx2/cbfa-1 [96]. RANKL is also involved in connective tissue remodeling; the addition of RANKL to the culture medium of human aortic valve myofibroblasts induces cell proliferation and MMP expression and activation as compared to medium alone [99]. Experimental studies showed that exogenous OPG protects aortic valve function in hypercholesterolemic Ldlr−/−Apob100/100 mice, which are prone to develop calcific AS. OPG profoundly attenuates valve calcification by inhibition of osteogenic transformation, but it does not prevent valve fibrosis or lipid deposition; in particular, OPG strongly suppresses levels of osterix, OCN, and monocyte-chemoattractant protein-1 [100]. In patients undergoing AVR surgery for AS, plasma levels of RANKL, runx2/cbfa1, and tartrate-resistant acid phosphatase (TRAP) exhibited a significant correlation to the severity of AS; in the same patients, mRNA levels of RANKL, RANK, and TRAP are significantly elevated in calcified parts of the valves compared to normal and thickened parts of the same valves obtained at time of surgery [101]. In patients with symptomatic AS, the levels of circulating OPG are poorly correlated with the degree of AS, but they are significantly associated with impaired cardiac function and all-cause mortality [102]. In patients with severe AS scheduled for AVR, preoperative circulating OPG levels are associated with left ventricular and left atrial remodeling; moreover, increasing OPG levels are associated with a poor postoperative outcome after surgery [103]. Interestingly, circulating OPG levels significantly change after surgical AVR, but they remain without any significant differences after transcatheter aortic valve implantation [104].

4. TRAIL

Tumor necrosis factor- (TNF-) related apoptosis-inducing ligand (TRAIL/Apo2L), located on chromosome 3, as a member of the TNF superfamily of proteins, is expressed as a type II transmembrane protein. Cleavage of its C-terminal part (extracellular domain) allows for a soluble form of TRAIL [105107].

TRAIL is mostly expressed by cells of the immune system where it was shown to play a role in the homeostasis of certain T-cells and in NK and T-cell-mediated killing of virally and oncogenically transformed cells [108110]. TRAIL forms homotrimers that bind receptors present on the cell surface. This trimerization enhances the biological activity of TRAIL as compared to monomeric forms of TRAIL [106]. To date, TRAIL has been shown to interact with five receptors, including the death receptors DR4/TRAIL-R1/TNFRSF10A [111] and DR5/TRAIL-R2/TNFRSF10B [112115] as well as the decoy receptors DcR1/TRAIL-R3/TNFRSF10C [112, 113] and DcR2/TRAIL-R4/TNFRSF10D [114]. In addition to these four membrane-bound receptors, TRAIL is also able to bind to OPG [81]. DR4 and DR5 are type I transmembrane proteins that contain a death domain in their cytoplasmic domain that can bind to other death domains. Upon binding of TRAIL trimer, DR4 and DR5 are oligomerized and can then transduce the apoptotic signal. Inversely, DcR1 and DcR2 can transduce an apoptotic signal. Indeed, DcR1 is bound to the membrane exclusively through a glycosylphosphatidylinositol (GPI) anchor, hence, lacking the entire cytoplasmic domain, and DcR2 contains a truncated and nonfunctional death domain. Hence, even though TRAIL binds to the decoy receptors, the apoptotic pathway cannot be engaged. This competition for the binding to TRAIL was first thought to be the mechanism behind the resistance of certain tumor cells to TRAIL-mediated apoptosis. TRAIL binding to DR4 and DR5 induces recruitment of the adapter molecules Fas-associated death domain (FADD) that leads to direct activation of the caspase cascade. This activation is accomplished by recruitment of caspase-8, followed by its proteolytic activation. Once activated, caspase-8 can proteolytically cleave the BH3-interacting death domain agonist (Bid), a proapoptotic member of the Bcl-2 family proteins, leading to the formation of a truncated Bid form (tBid) that, in turn, activates the mitochondrial apoptotic pathway [115117]. Alternatively, the activated initiator caspase-8/-10, in turn, targets the effector caspase-3 for proteolytic cleavage which, once activated, cleaves other caspases as well as numerous regulatory and structural proteins [118, 119], resulting in the appearance of the hallmarks of apoptosis such as membrane blebbing, internucleosomal DNA fragmentation, and nuclear shrinkage [120].

TRAIL firstly received considerable attention as a molecule showing the ability to induce apoptosis in a wide variety of neoplastic cells [121]. However, many normal cells, such as thymocytes [121], neural cells [122], hepatocytes [123], osteoclasts [124126], osteoblasts [127129], VSMCs [130], and VICs [8], are sensitive to TRAIL-induced apoptosis.

TRAIL in CAVD. VICs sensitivity to TRAIL apoptotic effect is of paramount importance because apoptosis has been shown to be an initiator of vascular calcification in in vitro studies [131]; increased apoptosis precedes calcification in VSMC cultures, and apoptotic bodies may act as nucleating structures for calcium crystal formation [131]. Previous studies focused on the role of apoptosis in the pathogenesis of CAVD [7, 132, 133].

TGF-β1 is present in human calcific aortic stenotic cusps and promotes calcification of cultured sheep aortic VICs (SAVICs) through mechanisms involving apoptosis [7]; in fact, the administration of an apoptosis inhibitor to SAVICs cultured in an osteogenic environment results in a significant decrease in nodules calcification, thereby demonstrating that a certain level of apoptosis is necessary for the calcification of nodules in these cultures [7]. TRAIL has been detected in atherosclerotic lesions [134], and TRAIL-expressing T-cells induce apoptosis of VSMCs in the atherosclerotic plaque [130]. TRAIL is expressed in human calcified aortic valves but not in normal ones, and it is mainly produced by T-cell and macrophages. Moreover, serum levels of TRAIL are significantly elevated in patients with CAVD compared to normal subjects [8]. VICs derived from calcific and noncalcific aortic valves express both death and decoy TRAIL receptors; in particular, VICs derived from calcific valves show significantly higher gene and protein levels of DR4, DR5, DcR1, and DcR2 compared to VICs derived from noncalcific valves [8]. Additionally, VICs derived from calcific valves express significantly higher levels of runx2 compared to VICs from noncalcific valves; thus, the osteoblast-like phenotype is also associated with a higher expression of all TRAIL receptors [8]. The expression of TRAIL receptors in human VICs is associated with the sensitivity to TRAIL-mediated apoptosis involving caspase-3 activation [8]. VICs cultured in an osteogenic medium express higher mRNA levels of runx2 and OCN, together with the increase of DR4 levels compared to medium alone [8]; moreover, the addition of TRAIL to the osteogenic medium leads to a significant increase of mineralized matrix nodule deposition [8]. Taken together, all of these results suggest an active role of TRAIL-induced apoptosis in the pathogenesis of CAVD.

5. Conclusions

Although, to date, no medical therapeutic options are able to prevent or reduce the progression of CAVD and the only treatment for severe AS is surgical aortic valve replacement (AVR), the understanding of the underlying pathogenic mechanisms of the disease is mandatory to identify promising therapeutic targets. It is known that the recently available biologic drugs neutralizing RANKL and TNF-α, key cytokines in CAVD pathogenesis, are having a great success in the treatment of osteoporosis and arthritis, respectively [135, 136]. Thus, it could be that in the future these molecules could be useful in CAVD treatment/prevention, also because a strong association has been demonstrated between arterial and valvular calcification and osteoporotic bone remodelling [137].

References

  1. R. V. Freeman and C. M. Otto, “Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies,” Circulation, vol. 111, no. 24, pp. 3316–3326, 2005. View at: Publisher Site | Google Scholar
  2. B. Iung, G. Baron, E. G. Butchart et al., “A prospective survey of patients with valvular heart disease in Europe: the euro heart survey on valvular heart disease,” European Heart Journal, vol. 24, no. 13, pp. 1231–1243, 2003. View at: Publisher Site | Google Scholar
  3. V. T. Nkomo, J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano, “Burden of valvular heart diseases: a population-based study,” The Lancet, vol. 368, no. 9540, pp. 1005–1011, 2006. View at: Publisher Site | Google Scholar
  4. B. F. Stewart, D. Siscovick, B. K. Lind et al., “Clinical factors associated with calcific aortic valve disease,” Journal of the American College of Cardiology, vol. 29, no. 3, pp. 630–634, 1997. View at: Publisher Site | Google Scholar
  5. M. Lindroos, M. Kupari, J. Heikkila, and R. Tilvis, “Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample,” Journal of the American College of Cardiology, vol. 21, no. 5, pp. 1220–1225, 1993. View at: Google Scholar
  6. N. M. Rajamannan, F. J. Evans, E. Aikawa et al., “Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the national heart and lung and blood institute aortic stenosis working group,” Circulation, vol. 124, no. 16, pp. 1783–1791, 2011. View at: Publisher Site | Google Scholar
  7. B. Jian, N. Narula, Q. Li, E. R. Mohler III, and R. J. Levy, “Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis,” Annals of Thoracic Surgery, vol. 75, no. 2, pp. 457–465, 2003. View at: Publisher Site | Google Scholar
  8. A. Galeone, G. Brunetti, A. Oranger et al., “Aortic valvular interstitial cells apoptosis and calcification is mediated by TNF-related apoptosis-inducing ligand,” International Journal of Cardiology, 2013. View at: Publisher Site | Google Scholar
  9. M. Olsson, C. Dalsgaard, A. Haegerstrand, M. Rosenqvist, L. Rydén, and J. Nilsson, “Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves,” Journal of the American College of Cardiology, vol. 23, no. 5, pp. 1162–1170, 1994. View at: Google Scholar
  10. C. M. Otto, J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O'Brien, “Characterization of the early lesion of “degenerative” valvular aortic stenosis: histological and immunohistochemical studies,” Circulation, vol. 90, no. 2, pp. 844–853, 1994. View at: Google Scholar
  11. K. D. O'Brien, D. D. Reichenbach, S. M. Marcovina, J. Kuusisto, C. E. Alpers, and C. M. Otto, “Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of “degenerative” valvular aortic stenosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 4, pp. 523–532, 1996. View at: Google Scholar
  12. M. Olsson, J. Thyberg, and J. Nilsson, “Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 5, pp. 1218–1222, 1999. View at: Google Scholar
  13. A. M. Muller, C. Cronen, L. I. Kupferwasser, H. Oelert, K. M. Muller, and C. J. Kirkpatrick, “Expression of endothelial cell adhesion molecules on heart valves: up-regulation in degeneration as well as acute endocarditis,” Journal of Pathology, vol. 191, no. 1, pp. 54–60, 2000. View at: Publisher Site | Google Scholar
  14. J. J. Kaden, C. Dempfle, R. Grobholz et al., “Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis,” Atherosclerosis, vol. 170, no. 2, pp. 205–211, 2003. View at: Publisher Site | Google Scholar
  15. J. J. Kaden, R. Kiliç, A. Sarikoç et al., “Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification,” International Journal of Molecular Medicine, vol. 16, no. 5, pp. 869–872, 2005. View at: Google Scholar
  16. M. E. Edep, J. Shirani, P. Wolf, and D. L. Brown, “Matrix metalloproteinase expression in nonrheumatic aortic stenosis,” Cardiovascular Pathology, vol. 9, no. 5, pp. 281–286, 2000. View at: Publisher Site | Google Scholar
  17. E. R. Mohler III, F. Gannon, C. Reynolds, R. Zimmerman, M. G. Keane, and F. S. Kaplan, “Bone formation and inflammation in cardiac valves,” Circulation, vol. 103, no. 11, pp. 1522–1528, 2001. View at: Google Scholar
  18. K. Boström, K. E. Watson, W. P. Stanford, and L. L. Demer, “Atherosclerotic calcification: relation to developmental osteogenesis,” The American Journal of Cardiology, vol. 75, no. 6, pp. 88B–91B, 1995. View at: Google Scholar
  19. L. L. Demer, “A skeleton in the atherosclerosis closet,” Circulation, vol. 92, no. 8, pp. 2029–2032, 1995. View at: Google Scholar
  20. E. R. Mohler III, M. K. Chawla, A. W. Chang et al., “Identification and characterization of calcifying valve cells from human and canine aortic valves,” Journal of Heart Valve Disease, vol. 8, no. 3, pp. 254–260, 1999. View at: Google Scholar
  21. E. R. Mohler, L. P. Adam, P. McClelland, L. Graham, and D. R. Hathaway, “Detection of osteopontin in calcified human aortic valves,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 3, pp. 547–552, 1997. View at: Google Scholar
  22. K. D. O'Brien, J. Kuusisto, D. D. Reichenbach et al., “Osteopontin is expressed in human aortic valvular lesions,” Circulation, vol. 92, no. 8, pp. 2163–2168, 1995. View at: Google Scholar
  23. B. B. Aggarwal, S. C. Gupta, and J. H. Kim, “Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey,” Blood, vol. 119, no. 3, pp. 651–665, 2012. View at: Publisher Site | Google Scholar
  24. M. Kriegler, C. Perez, K. DeFay, I. Albert, and S. D. Lu, “A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF,” Cell, vol. 53, no. 1, pp. 45–53, 1988. View at: Google Scholar
  25. P. Tang, M. C. Hung, and J. Klostergaard, “Human pro-tumor necrosis factor is a homotrimer,” Biochemistry, vol. 35, no. 25, pp. 8216–8225, 1996. View at: Publisher Site | Google Scholar
  26. R. A. Black, C. T. Rauch, C. J. Kozlosky et al., “A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells,” Nature, vol. 385, no. 6618, pp. 729–733, 1997. View at: Publisher Site | Google Scholar
  27. K. Pfeffer, “Biological functions of tumor necrosis factor cytokines and their receptors,” Cytokine and Growth Factor Reviews, vol. 14, no. 3-4, pp. 185–191, 2003. View at: Publisher Site | Google Scholar
  28. C. Popa, M. G. Netea, P. L. C. M. van Riel, J. W. M. van der Meer, and A. F. H. Stalenhoef, “The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk,” Journal of Lipid Research, vol. 48, no. 4, pp. 751–762, 2007. View at: Publisher Site | Google Scholar
  29. H. Hsu, J. Xiong, and D. V. Goeddel, “The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation,” Cell, vol. 81, no. 4, pp. 495–504, 1995. View at: Google Scholar
  30. H. Hsu, H. B. Shu, M. G. Pan, and D. V. Goeddel, “TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways,” Cell, vol. 84, no. 2, pp. 299–308, 1996. View at: Publisher Site | Google Scholar
  31. M. J. Morgan and Z. G. Liu, “Reactive oxygen species in TNFα-induced signaling and cell death,” Molecules and Cells, vol. 30, no. 1, pp. 1–12, 2010. View at: Publisher Site | Google Scholar
  32. B. B. Aggarwal, “Nuclear factor-κB: the enemy within,” Cancer Cell, vol. 6, no. 3, pp. 203–208, 2004. View at: Publisher Site | Google Scholar
  33. M. Takeuchi, M. Rothe, and D. V. Goeddel, “Anatomy of TRAF2: distinct domains for nuclear factor-κB activation and association with tumor necrosis factor signaling proteins,” The Journal of Biological Chemistry, vol. 271, no. 33, pp. 19935–19942, 1996. View at: Publisher Site | Google Scholar
  34. Z. J. Chen, “Ubiquitin signalling in the NF-κB pathway,” Nature Cell Biology, vol. 7, no. 8, pp. 758–765, 2005. View at: Publisher Site | Google Scholar
  35. M. S. Hayden and S. Ghosh, “Signaling to NF-κB,” Genes and Development, vol. 18, no. 18, pp. 2195–2224, 2004. View at: Publisher Site | Google Scholar
  36. S. Vallabhapurapu and M. Karin, “Regulation and function of NF-κB transcription factors in the immune system,” Annual Review of Immunology, vol. 27, pp. 693–733, 2009. View at: Publisher Site | Google Scholar
  37. B. B. Aggarwal, “Signalling pathways of the TNF superfamily: a double-edged sword,” Nature Reviews Immunology, vol. 3, no. 9, pp. 745–756, 2003. View at: Publisher Site | Google Scholar
  38. G. Natoli, A. Costanzo, F. Moretti, M. Fulco, C. Balsano, and M. Levrero, “Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor κB (NFκB)-inducing kinase requirement for activation of activating protein 1 and NFκB but not of c-Jun N-terminal kinase/stress-activated protein kinase,” The Journal of Biological Chemistry, vol. 272, no. 42, pp. 26079–26082, 1997. View at: Publisher Site | Google Scholar
  39. E. Brietzke and F. Kapczinski, “TNF-α as a molecular target in bipolar disorder,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 6, pp. 1355–1361, 2008. View at: Publisher Site | Google Scholar
  40. M. G. Matera, L. Calzetta, and M. Cazzola, “TNF-α inhibitors in asthma and COPD: we must not throw the baby out with the bath water,” Pulmonary Pharmacology and Therapeutics, vol. 23, no. 2, pp. 121–128, 2010. View at: Publisher Site | Google Scholar
  41. G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993. View at: Google Scholar
  42. I. Roato, M. Grano, G. Brunetti et al., “Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement,” FASEB Journal, vol. 19, no. 2, pp. 228–230, 2005. View at: Publisher Site | Google Scholar
  43. P. D'Amelo, A. Grimaldi, G. P. Pescarmona, C. Tamone, I. Roato, and G. Isaia, “Spontaneous osteoclast formation from peripheral blood mononuclear cells in postmenopausal osteoporosis,” FASEB Journal, vol. 19, no. 3, pp. 410–412, 2005. View at: Publisher Site | Google Scholar
  44. G. Brunetti, S. Colucci, P. Pignataro et al., “T cells support osteoclastogenesis in an in vitro model derived from human periodontitis patients,” Journal of Periodontology, vol. 76, no. 10, pp. 1675–1680, 2005. View at: Publisher Site | Google Scholar
  45. S. Colucci, G. Brunetti, F. P. Cantatore et al., “Lymphocytes and synovial fluid fibroblasts support osteoclastogenesis through RANKL, TNFα, and IL-7 in an in vitro model derived from human psoriatic arthritis,” Journal of Pathology, vol. 212, no. 1, pp. 47–55, 2007. View at: Publisher Site | Google Scholar
  46. A. M. Feldman, A. Combes, D. Wagner et al., “The role of tumor necrosis factor in the pathophysiology of heart failure,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 537–544, 2000. View at: Publisher Site | Google Scholar
  47. G. E. McKellar, D. W. McCarey, N. Sattar, and I. B. McInnes, “Role for TNF in atherosclerosis? Lessons from autoimmune disease,” Nature Reviews Cardiology, vol. 6, no. 6, pp. 410–417, 2009. View at: Publisher Site | Google Scholar
  48. Y. Tintut, J. Patel, F. Parhami, and L. L. Demer, “Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway,” Circulation, vol. 102, no. 21, pp. 2636–2642, 2000. View at: Google Scholar
  49. J. J. Kaden, C. Dempfle, R. Grobholz et al., “Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis,” Cardiovascular Pathology, vol. 14, no. 2, pp. 80–87, 2005. View at: Publisher Site | Google Scholar
  50. Z. Yu, K. Seya, K. Daitoku, S. Motomura, I. Fukuda, and K. Furukawa, “Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway,” Journal of Pharmacology and Experimental Therapeutics, vol. 337, no. 1, pp. 16–23, 2011. View at: Publisher Site | Google Scholar
  51. D. Mohty, P. Pibarot, J. Després et al., “Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 1, pp. 187–193, 2008. View at: Publisher Site | Google Scholar
  52. K. Isoda, T. Matsuki, H. Kondo, Y. Iwakura, and F. Ohsuzu, “Deficiency of interleukin-1 receptor antagonist induces aortic valve disease in BALB/c Mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 708–715, 2010. View at: Publisher Site | Google Scholar
  53. S. R. Kapadia, K. Yakoob, S. Nader, J. D. Thomas, D. L. Mann, and B. P. Griffin, “Elevated circulating levels of serum tumor necrosis factor-alpha in patients with hemodynamically significant pressure and volume overload,” Journal of the American College of Cardiology, vol. 36, no. 1, pp. 208–212, 2000. View at: Publisher Site | Google Scholar
  54. S. S. Kastellanos, I. K. Toumpoulis, C. Aggeli et al., “Time course of C-reactive protein, tumour necrosis factor-alpha and monocyte chemoattractant protein-1 following the surgical treatment of patients with aortic valve stenosis,” Hellenic Journal of Cardiology, vol. 48, no. 1, pp. 5–14, 2007. View at: Google Scholar
  55. S. Kiechl, P. Werner, M. Knoflach, M. Furtner, J. Willeit, and G. Schett, “The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease,” Expert Review of Cardiovascular Therapy, vol. 4, no. 6, pp. 801–811, 2006. View at: Publisher Site | Google Scholar
  56. Y. Y. Kong, H. Yoshida, I. Sarosi et al., “OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis,” Nature, vol. 397, no. 6717, pp. 315–323, 1999. View at: Publisher Site | Google Scholar
  57. M. Nagai, S. Kyakumoto, and N. Sato, “Cancer cells responsible for humoral hypercalcemia express mRNA encoding a secreted form of ODF/TRANCE that induces osteoclast formation,” Biochemical and Biophysical Research Communications, vol. 269, no. 2, pp. 532–536, 2000. View at: Publisher Site | Google Scholar
  58. L. Lum, B. R. Wong, R. Josien et al., “Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival,” The Journal of Biological Chemistry, vol. 274, no. 19, pp. 13613–13618, 1999. View at: Publisher Site | Google Scholar
  59. J. Schlöndorff, L. Lum, and C. P. Blobel, “Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor α convertase,” The Journal of Biological Chemistry, vol. 276, no. 18, pp. 14665–14674, 2001. View at: Publisher Site | Google Scholar
  60. D. M. Anderson, E. Maraskovsky, W. L. Billingsley et al., “A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function,” Nature, vol. 390, no. 6656, pp. 175–179, 1997. View at: Publisher Site | Google Scholar
  61. B. R. Wong, J. Rho, J. Arron et al., “TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells,” The Journal of Biological Chemistry, vol. 272, no. 40, pp. 25190–25194, 1997. View at: Publisher Site | Google Scholar
  62. D. L. Lacey, E. Timms, H.-. Tan et al., “Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation,” Cell, vol. 93, no. 2, pp. 165–176, 1998. View at: Publisher Site | Google Scholar
  63. J. E. Fata, Y. Kong, J. Li et al., “The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development,” Cell, vol. 103, no. 1, pp. 41–50, 2000. View at: Google Scholar
  64. J. Lam, C. A. Nelson, F. P. Ross, S. L. Teitelbaum, and D. H. Fremont, “Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity,” Journal of Clinical Investigation, vol. 108, no. 7, pp. 971–979, 2001. View at: Publisher Site | Google Scholar
  65. S. Ito, K. Wakabayashi, O. Ubukata, S. Hayashi, F. Okada, and T. Hata, “Crystal structure of the extracellular domain of mouse RANK ligand at 2.2-Å resolution,” The Journal of Biological Chemistry, vol. 277, no. 8, pp. 6631–6636, 2002. View at: Publisher Site | Google Scholar
  66. C. Liu, T. S. Walter, P. Huang et al., “Structural and functional insights of RANKL-RANK interaction and signaling,” Journal of Immunology, vol. 184, no. 12, pp. 6910–6919, 2010. View at: Publisher Site | Google Scholar
  67. N. Kim, P. R. Odgren, D. Kim, S. C. Marks Jr., and Y. Choi, “Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 10905–10910, 2000. View at: Google Scholar
  68. P. R. Odgren, N. Kim, C. A. MacKay, A. Mason-Savas, Y. Choi, and S. C. Marks Jr., “The role of RANKL (TRANCE/TNFSF11), a tumor necrosis factor family member, in skeletal development: effects of gene knockout and transgenic rescue,” Connective Tissue Research, vol. 44, no. 1, pp. 264–271, 2003. View at: Google Scholar
  69. N. Lo Iacono, A. Pangrazio, M. Abinun et al., “RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease,” Clinical and Developmental Immunology, vol. 2013, Article ID 412768, 9 pages, 2013. View at: Publisher Site | Google Scholar
  70. E. Douni, V. Rinotas, E. Makrinou et al., “A RANKL G278R mutation causing osteopetrosis identifies a functional amino acid essential for trimer assembly in RANKL and TNF,” Human Molecular Genetics, vol. 21, no. 4, pp. 784–798, 2012. View at: Publisher Site | Google Scholar
  71. D. Kim, R. E. Mebius, J. D. MacMicking et al., “Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE,” Journal of Experimental Medicine, vol. 192, no. 10, pp. 1467–1478, 2000. View at: Publisher Site | Google Scholar
  72. B. G. Darnay, V. Haridas, J. Ni, P. A. Moore, and B. B. Aggarwal, “Characterization of the intracellular domain of receptor activator of NF-κB (RANK): interaction with tumor necrosis factor receptor-associated factors and activation of NF-κB and c-JUN N-terminal kinase,” The Journal of Biological Chemistry, vol. 273, no. 32, pp. 20551–20555, 1998. View at: Publisher Site | Google Scholar
  73. B. R. Wong, R. Josien, S. Y. Lee, M. Vologodskaia, R. M. Steinman, and Y. Choi, “The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor,” The Journal of Biological Chemistry, vol. 273, no. 43, pp. 28355–28359, 1998. View at: Publisher Site | Google Scholar
  74. H. Kim, D. E. Lee, J. N. Shin et al., “Receptor activator of NF-κB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase,” FEBS Letters, vol. 443, no. 3, pp. 297–302, 1999. View at: Publisher Site | Google Scholar
  75. H. Nishitoh, M. Saitoh, Y. Mochida et al., “ASK1 is essential for JNK/SAPK activation by TRAF2,” Molecular Cell, vol. 2, no. 3, pp. 389–395, 1998. View at: Google Scholar
  76. K. P. Hoeflich, W. C. Yeh, Z. Yao, T. W. Mak, and J. R. Woodgett, “Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1),” Oncogene, vol. 18, no. 42, pp. 5814–5820, 1999. View at: Publisher Site | Google Scholar
  77. B. R. Wong, D. Besser, N. Kim et al., “TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src,” Molecular Cell, vol. 4, no. 6, pp. 1041–1049, 1999. View at: Google Scholar
  78. L. Xing, A. M. Venegas, A. Chen et al., “Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival,” Genes and Development, vol. 15, no. 2, pp. 241–253, 2001. View at: Publisher Site | Google Scholar
  79. J. R. Arron, M. Vologodskaia, B. R. Wong et al., “A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (TRANCE) and CD40L-mediated Akt activation,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 30011–30017, 2001. View at: Publisher Site | Google Scholar
  80. J. Mizukami, G. Takaesu, H. Akatsuka et al., “Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6,” Molecular and Cellular Biology, vol. 22, no. 4, pp. 992–1000, 2002. View at: Publisher Site | Google Scholar
  81. J. G. Emery, P. McDonnell, M. B. Burke et al., “Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL,” The Journal of Biological Chemistry, vol. 273, no. 23, pp. 14363–14367, 1998. View at: Publisher Site | Google Scholar
  82. I. Holen, P. I. Croucher, F. C. Hamdy, and C. L. Eaton, “Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells,” Cancer Research, vol. 62, no. 6, pp. 1619–1623, 2002. View at: Google Scholar
  83. G. Brunetti, S. Colucci, R. Rizzi et al., “The role of OPG/TRAIL complex in multiple myeloma,” Annals of the New York Academy of Sciences, vol. 1068, no. 1, pp. 334–340, 2006. View at: Publisher Site | Google Scholar
  84. S. Colucci, G. Brunetti, R. Rizzi et al., “T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction,” Blood, vol. 104, no. 12, pp. 3722–3730, 2004. View at: Publisher Site | Google Scholar
  85. C. M. Shipman and P. I. Croucher, “Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells,” Cancer Research, vol. 63, no. 5, pp. 912–916, 2003. View at: Google Scholar
  86. H. Yasuda, N. Shima, N. Nakagawa et al., “Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro,” Endocrinology, vol. 139, no. 3, pp. 1329–1337, 1998. View at: Publisher Site | Google Scholar
  87. W. S. Simonet, D. L. Lacey, C. R. Dunstan et al., “Osteoprotegerin: a novel secreted protein involved in the regulation of bone density,” Cell, vol. 89, no. 2, pp. 309–319, 1997. View at: Google Scholar
  88. B. S. Kwon, S. Wang, N. Udagawa et al., “TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption,” FASEB Journal, vol. 12, no. 10, pp. 845–854, 1998. View at: Google Scholar
  89. K. B. Tan, J. Harrop, M. Reddy et al., “Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells,” Gene, vol. 204, no. 1-2, pp. 35–46, 1997. View at: Publisher Site | Google Scholar
  90. T. J. Yun, P. M. Chaudhary, G. L. Shu et al., “OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40,” Journal of Immunology, vol. 161, no. 11, pp. 6113–6121, 1998. View at: Google Scholar
  91. H. Hsu, D. L. Lacey, C. R. Dunstan et al., “Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3540–3545, 1999. View at: Publisher Site | Google Scholar
  92. C. R. Dhore, J. P. M. Cleutjens, E. Lutgens et al., “Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 12, pp. 1998–2003, 2001. View at: Google Scholar
  93. H. Min, S. Morony, I. Sarosi et al., “Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis,” Journal of Experimental Medicine, vol. 192, no. 4, pp. 463–474, 2000. View at: Publisher Site | Google Scholar
  94. N. Bucay, I. Sarosi, C. R. Dunstan et al., “Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification,” Genes and Development, vol. 12, no. 9, pp. 1260–1268, 1998. View at: Google Scholar
  95. S. Panizo, A. Cardus, M. Encinas et al., “RANKL increases vascular smooth muscle cell calcification through a rank-bmp4-dependent pathway,” Circulation Research, vol. 104, no. 9, pp. 1041–1048, 2009. View at: Publisher Site | Google Scholar
  96. J. J. Kaden, S. Bickelhaupt, R. Grobholz et al., “Receptor activator of nuclear factor κB ligand and osteoprotegerin regulate aortic valve calcification,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 1, pp. 57–66, 2004. View at: Publisher Site | Google Scholar
  97. M. Steinmetz, D. Skowasch, N. Wernert et al., “Differential profile of the OPG/RANKL/RANK-system in degenerative aortic native and bioprosthetic valves,” The Journal of Heart Valve Disease, vol. 17, no. 2, pp. 187–193, 2008. View at: Google Scholar
  98. V. Pohjolainen, P. Taskinen, Y. Soini et al., “Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation,” Human Pathology, vol. 39, no. 11, pp. 1695–1701, 2008. View at: Publisher Site | Google Scholar
  99. J. J. Kaden, C. E. Dempfle, R. Kiliç et al., “Influence of receptor activator of nuclear factor kappa B on human aortic valve myofibroblasts,” Experimental and Molecular Pathology, vol. 78, no. 1, pp. 36–40, 2005. View at: Publisher Site | Google Scholar
  100. R. M. Weiss, D. D. Lund, Y. Chu et al., “Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice,” PLoS ONE, vol. 8, no. 6, Article ID e65201, 2013. View at: Publisher Site | Google Scholar
  101. E. Nagy, P. Eriksson, M. Yousry et al., “Valvular osteoclasts in calcification and aortic valve stenosis severity,” International Journal of Cardiology, vol. 168, no. 3, pp. 2264–2271, 2013. View at: Publisher Site | Google Scholar
  102. T. Ueland, P. Aukrust, C. P. Dahl et al., “Osteoprotegerin levels predict mortality in patients with symptomatic aortic stenosis,” Journal of Internal Medicine, vol. 270, no. 5, pp. 452–460, 2011. View at: Publisher Site | Google Scholar
  103. J. S. Dahl, L. Videbæk, M. K. Poulsen et al., “Relation of osteoprotegerin in severe aortic valve stenosis to postoperative outcome and left ventricular function,” The American Journal of Cardiology, vol. 112, no. 9, pp. 1433–1438, 2013. View at: Publisher Site | Google Scholar
  104. Z. Motovska, T. Vichova, P. Tousek, L. Dusek, and P. Widimsky, “Circulating osteoprotegerin and Dickkopf-1 changed significantly after surgical aortic valve replacement but remained without any significant differences after transcatheter aortic valve implantation,” International Journal of Cardiology, vol. 158, no. 2, pp. 300–301, 2012. View at: Publisher Site | Google Scholar
  105. F. C. Kimberley and G. R. Screaton, “Following a TRAIL: update on a ligand and its five receptors,” Cell Research, vol. 14, no. 5, pp. 359–372, 2004. View at: Publisher Site | Google Scholar
  106. S. R. Wiley, K. Schooley, P. J. Smolak et al., “Identification and characterization of a new member of the TNF family that induces apoptosis,” Immunity, vol. 3, no. 6, pp. 673–682, 1995. View at: Publisher Site | Google Scholar
  107. R. M. Pitti, S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A. Ashkenazi, “Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family,” The Journal of Biological Chemistry, vol. 271, no. 22, pp. 12687–12690, 1996. View at: Publisher Site | Google Scholar
  108. Y. Hayakawa, V. Screpanti, H. Yagita et al., “NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy,” Journal of Immunology, vol. 172, no. 1, pp. 123–129, 2004. View at: Google Scholar
  109. E. M. Janssen, N. M. Droin, E. E. Lemmens et al., “CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death,” Nature, vol. 434, no. 7029, pp. 88–93, 2005. View at: Publisher Site | Google Scholar
  110. M. J. Smyth, K. Takeda, Y. Hayakawa, J. J. Peschon, M. R. M. van den Brink, and H. Yagita, “Nature's TRAIL—on a path to cancer immunotherapy,” Immunity, vol. 18, no. 1, pp. 1–6, 2003. View at: Publisher Site | Google Scholar
  111. G. Pan, K. O'Rourke, A. M. Chinnaiyan et al., “The receptor for the cytotoxic ligand TRAIL,” Science, vol. 276, no. 5309, pp. 111–113, 1997. View at: Publisher Site | Google Scholar
  112. G. Pan, J. Ni, Y. Wei, G. Yu, R. Gentz, and V. M. Dixit, “An antagonist decoy receptor and a death domain-containing receptor for TRAIL,” Science, vol. 277, no. 5327, pp. 815–818, 1997. View at: Publisher Site | Google Scholar
  113. J. P. Sheridan, S. A. Marsters, R. M. Pitti et al., “Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors,” Science, vol. 277, no. 5327, pp. 818–821, 1997. View at: Publisher Site | Google Scholar
  114. S. A. Marsters, J. P. Sheridan, R. M. Pitti et al., “A novel receptor for Apo2L/TRAIL contains a truncated death domain,” Current Biology, vol. 7, no. 12, pp. 1003–1006, 1997. View at: Google Scholar
  115. X. Luo, I. Budihardjo, H. Zou, C. Slaughter, and X. Wang, “Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors,” Cell, vol. 94, no. 4, pp. 481–490, 1998. View at: Google Scholar
  116. H. Li, H. Zhu, C. Xu, and J. Yuan, “Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis,” Cell, vol. 94, no. 4, pp. 491–501, 1998. View at: Google Scholar
  117. A. Gross, X. M. Yin, K. Wang et al., “Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-X(L) prevents this release but not tumor necrosis factor-R1/Fas death,” The Journal of Biological Chemistry, vol. 274, no. 2, pp. 1156–1163, 1999. View at: Publisher Site | Google Scholar
  118. N. N. Danial and S. J. Korsmeyer, “Cell death: critical control points,” Cell, vol. 116, no. 2, pp. 205–219, 2004. View at: Publisher Site | Google Scholar
  119. Z. Jin and W. S. El-Deiry, “Overview of cell death signaling pathways,” Cancer Biology and Therapy, vol. 4, no. 2, pp. 139–163, 2005. View at: Google Scholar
  120. L. Galluzzi, M. C. Maiuri, I. Vitale et al., “Cell death modalities: classification and pathophysiological implications,” Cell Death and Differentiation, vol. 14, no. 7, pp. 1237–1243, 2007. View at: Publisher Site | Google Scholar
  121. A. Almasan and A. Ashkenazi, “Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy,” Cytokine and Growth Factor Reviews, vol. 14, no. 3-4, pp. 337–348, 2003. View at: Publisher Site | Google Scholar
  122. A. Martin-Villalba, I. Herr, I. Jeremias et al., “CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons,” Journal of Neuroscience, vol. 19, no. 10, pp. 3809–3817, 1999. View at: Google Scholar
  123. M. H. Jo, T. Kim, D. W. Seol et al., “Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand,” Nature Medicine, vol. 6, no. 5, pp. 564–567, 2000. View at: Publisher Site | Google Scholar
  124. S. Roux, P. Lambert-Comeau, C. Saint-Pierre, M. Lépine, B. Sawan, and J. L. Parent, “Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis,” Biochemical and Biophysical Research Communications, vol. 333, no. 1, pp. 42–50, 2005. View at: Publisher Site | Google Scholar
  125. S. Colucci, G. Brunetti, F. P. Cantatore et al., “The death receptor DR5 is involved in TRAIL-mediated human osteoclast apoptosis,” Apoptosis, vol. 12, no. 9, pp. 1623–1632, 2007. View at: Publisher Site | Google Scholar
  126. G. Brunetti, A. Oranger, G. Mori et al., “TRAIL is involved in human osteoclast apoptosis,” Annals of the New York Academy of Sciences, vol. 1116, pp. 316–322, 2007. View at: Publisher Site | Google Scholar
  127. G. Brunetti, A. Oranger, C. Carbone et al., “Osteoblasts display different responsiveness to TRAIL-induced apoptosis during their differentiation process,” Cell Biochemistry and Biophysics, 2013. View at: Publisher Site | Google Scholar
  128. G. Mori, G. Brunetti, S. Collucci et al., “Osteoblast apoptosis in periodontal disease: role of TNF-related apoptosis-inducing ligand,” International Journal of Immunopathology and Pharmacology, vol. 22, no. 1, pp. 95–103, 2009. View at: Google Scholar
  129. G. Mori, G. Brunetti, S. Colucci et al., “Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: role of TRAIL,” Journal of Biological Regulators and Homeostatic Agents, vol. 21, no. 3-4, pp. 105–114, 2007. View at: Google Scholar
  130. K. Sato, A. Niessner, S. L. Kopecky, R. L. Frye, J. J. Goronzy, and C. M. Weyand, “TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 239–250, 2006. View at: Publisher Site | Google Scholar
  131. D. Proudfoot, J. N. Skepper, L. Hegyi, M. R. Bennett, C. M. Shanahan, and P. L. Weissberg, “Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies,” Circulation Research, vol. 87, no. 11, pp. 1055–1062, 2000. View at: Google Scholar
  132. J. N. Clark-Greuel, J. M. Connolly, E. Sorichillo et al., “Transforming growth factor-β1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events,” Annals of Thoracic Surgery, vol. 83, no. 3, pp. 946–953, 2007. View at: Publisher Site | Google Scholar
  133. X. Gu and K. S. Masters, “Role of the MAPK/ERK pathway in valvular interstitial cell calcification,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 296, no. 6, pp. H1748–H1757, 2009. View at: Publisher Site | Google Scholar
  134. M. Schoppet, N. Al-Fakhri, F. E. Franke et al., “Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-κB ligand in Mönckeberg's sclerosis and atherosclerosis,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 4104–4112, 2004. View at: Publisher Site | Google Scholar
  135. M. D. Moen and S. J. Keam, “Denosumab: a review of its use in the treatment of postmenopausal osteoporosis,” Drugs and Aging, vol. 28, no. 1, pp. 63–82, 2011. View at: Publisher Site | Google Scholar
  136. A. Corrado, A. Neve, N. Maruotti, and F. P. Cantatore, “Bone effects of biologic drugs in rheumatoid arthritis,” Clinical and Developmental Immunology, vol. 2013, Article ID 945945, 7 pages, 2013. View at: Publisher Site | Google Scholar
  137. J. Hjortnaes, J. Butcher, J. L. Figueiredo et al., “Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation,” European Heart Journal, vol. 31, no. 16, pp. 1975–1984, 2010. View at: Publisher Site | Google Scholar

Copyright © 2013 Antonella Galeone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

1731 Views | 779 Downloads | 18 Citations
 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.