Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 890215, 8 pages
http://dx.doi.org/10.1155/2013/890215
Research Article

Effect of Electronic Acceptor Segments on Photophysical Properties of Low-Band-Gap Ambipolar Polymers

1College of Science, Northeast Forestry University, Harbin 150040, China
2School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
3College of Science, Jiamusi University, Jiamusi 154001, China
4Department of Physics, Liaoning University, Shenyang 110036, China

Received 6 November 2012; Accepted 17 December 2012

Academic Editors: J. Karwowski, A. Kochur, and B. Zygelman

Copyright © 2013 Yuanzuo Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, “Organic heterostructure field-effect transistors,” Science, vol. 269, no. 5230, pp. 1560–1562, 1995. View at Google Scholar · View at Scopus
  2. H. Yan, Z. H. Chen, Y. Zheng et al., “A high-mobility electron-transporting polymer for printed transistors,” Nature, vol. 457, no. 7230, pp. 679–686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Martel, V. Derycke, C. Lavoie et al., “Ambipolar electrical transport in semiconducting single-wall carbon nanotubes,” Physical Review Letters, vol. 87, no. 25, Article ID 256805, 4 pages, 2001. View at Google Scholar
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Bijleveld, R. A. M. Verstrijden, M. M. Wienk, and R. A. J. Janssen, “Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells,” Journal of Materials Chemistry, vol. 21, no. 25, pp. 9224–9231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Algi and A. Cihaner, “An electroactive polymeric material and its voltammetric response towards alkali metal cations in neat water,” Tetrahedron Letters, vol. 49, no. 21, pp. 3530–3533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Sahu, H. Padhy, D. Patra et al., “Synthesis and applications of novel acceptor-donor-acceptor organic dyes with dithienopyrrole- and fluorene-cores for dye-sensitized solar cells,” Tetrahedron, vol. 67, no. 2, pp. 303–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, and Y. Tai, “Improving the efficiency of organic solar cell with a novel ambipolar polymer to form ternary cascade structure,” Solar Energy Materials and Solar Cells, vol. 95, no. 9, pp. 2621–2627, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Algi and A. Cihaner, “An ambipolar low band gap material based on BODIPY and EDOT,” Organic Electronics, vol. 10, no. 3, pp. 453–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Karakus, A. Balan, D. Baran, L. Toppare, and A. Cirpan, “Electrochemical and optical properties of solution processable benzotriazole and benzothiadiazole containing copolymers,” Synthetic Metals, vol. 162, no. 1-2, pp. 79–84, 2012. View at Google Scholar
  11. T. D. Anthopoulos, C. Tanase, S. Setayesh et al., “Ambipolar organic field-effect transistors based on a solution-processed methanofullerene,” Advanced Materials, vol. 16, no. 23-24, pp. 2174–2179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Kunugi, K. Takimiya, N. Negishi, T. Otsubo, and Y. Aso, “An ambipolar organic field-effect transistor using oligothiophene incorporated with two [60]fullerenes,” Journal of Materials Chemistry, vol. 14, no. 19, pp. 2840–2841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Bijleveld, A. P. Zoombelt, S. G. J. Mathijssen et al., “Poly(diketopyrrolopyrroleĀterthiophene) for ambipolar logic and photovoltaics,” Journal of the American Chemical Society, vol. 131, no. 46, pp. 16616–16617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. S. Kim, E. Ahmed, S. Subramaniyan, and S. A. Jenekhe, “Air-stable ambipolar field-effect transistors and complementary logic circuits from solution-processed n/p polymer heterojunctions,” ACS Applied Materials and Interfaces, vol. 2, no. 11, pp. 2974–2977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. D. Yuen, J. Fan, J. Seifter et al., “High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability,” Journal of the American Chemical Society, vol. 133, no. 51, pp. 20799–20807, 2011. View at Google Scholar
  16. M. T. Sun, “Control of structure and photophysical properties by protonation and subsequent intramolecular hydrogen bonding,” Journal of Chemical Physics, vol. 124, no. 5, Article ID 054903, 6 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Z. Li, T. Pullerits, M. Y. Zhao, and M. T. Sun, “Theoretical characterization of the PC60BM: PDDTT mode for an organic solar cell,” The Journal of Physical Chemistry C, vol. 115, no. 44, pp. 21865–21873, 2011. View at Google Scholar
  18. M. Sun, T. Pullerits, P. Kjellberg, W. J. D. Beenken, and K. L. Han, “Control of emission by intermolecular fluorescence resonance energy transfer and intermolecular charge transfer,” Journal of Physical Chemistry A, vol. 110, no. 19, pp. 6324–6328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. T. Sun and H. X. Xu, “A novel application of plasmonics: plasmon-driven surface-catalyzed reactions,” Small, vol. 8, no. 18, pp. 2777–2786, 2012. View at Publisher · View at Google Scholar
  20. J. M. R. Dreizler and E. K. U. Gross, Density Functional Theory, Springer, Heidelberg, Germany, 1990.
  21. A. D. Becke and R. G. Parr, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. View at Publisher · View at Google Scholar
  22. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648–5652, 1993. View at Google Scholar
  23. C. Lee and W. Yang, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar
  24. Y. Z. Li, F. C. Ma, B. Dong, J. Li, and M. D. Chen, “Theoretical study of charge transfer mechanism in fullerene-phenylphenothiazine compound: a real-space analysis,” Dyes Pigments, vol. 92, no. 3, pp. 1344–1350, 2012. View at Google Scholar
  25. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules,” Journal of Chemical Physics, vol. 109, no. 19, pp. 8218–8224, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters, vol. 393, no. 1–3, pp. 51–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. W. J. D. Beenken and T. Pullerits, “Spectroscopic units in conjugated polymers: a quantum chemically founded concept?” Journal of Physical Chemistry B, vol. 108, no. 20, pp. 6164–6169, 2004. View at Google Scholar · View at Scopus
  28. M. T. Sun, P. Kjellberg, W. J. D. Beenken, and T. Pullerits, “Comparison of the electronic structure of PPV and its derivative DIOXA-PPV,” Chemical Physics, vol. 327, no. 2-3, pp. 474–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.02, Gaussian, Wallingford, Conn, USA, 2009.
  30. N. M. O’Boyle and J. G. Vos, “GaussSum 1. 0,” Dublin City University, 2005, http://gausssum.sourceforge.net/.
  31. R. L. Martin, “Natural transition orbitals,” Journal of Chemical Physics, vol. 118, no. 11, pp. 4775–4777, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Sundholm, S. Taubert, and F. Pichierri, “Calculation of absorption and emission spectra of [n]cycloparaphenylenes: the reason for the large Stokes shift,” Physical Chemistry Chemical Physics, vol. 12, no. 11, pp. 2751–2757, 2010. View at Publisher · View at Google Scholar · View at Scopus