Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 913654, 10 pages
http://dx.doi.org/10.1155/2013/913654
Research Article

Glycyrrhetinic Acid-Poly(ethylene glycol)-glycyrrhetinic Acid Tri-Block Conjugates Based Self-Assembled Micelles for Hepatic Targeted Delivery of Poorly Water Soluble Drug

1Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan 610041, China
2The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China

Received 24 June 2013; Accepted 29 July 2013

Academic Editors: D. Quintanar-Guerrero, A. Savaser, and L. A. Videla

Copyright © 2013 Fengbo Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Nassiri Asl and H. Hosseinzadeh, “Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds,” Phytotherapy Research, vol. 22, no. 6, pp. 709–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Luk, Q.-S. Zhang, N. P. Lee et al., “Hepatic stellate cell-targeted delivery of M6P-HSA-glycyrrhetinic acid attenuates hepatic fibrogenesis in a bile duct ligation rat model,” Liver International, vol. 27, no. 4, pp. 548–557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Shibata, “A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice,” Yakugaku Zasshi, vol. 120, no. 10, pp. 849–862, 2000. View at Google Scholar · View at Scopus
  4. T. Rossi, M. Castelli, G. Zandomeneghi et al., “Selectivity of action of glycyrrhizin derivatives on the growth of MCF-7 and HEP-2 cells,” Anticancer Research, vol. 23, no. 5 A, pp. 3813–3818, 2003. View at Google Scholar · View at Scopus
  5. D. Liu, D. Song, G. Guo et al., “The synthesis of 18β-glycyrrhetinic acid derivatives which have increased antiproliferative and apoptotic effects in leukemia cells,” Bioorganic and Medicinal Chemistry, vol. 15, no. 16, pp. 5432–5439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-J. Mao, Y.-Q. Bi, J. Hui, D.-P. Wei, H. Ru, and S.-X. Hou, “Preparation, characterization and uptake by primary cultured rat hepatocytes of liposomes surface-modified with glycyrrhetinic acid,” Pharmazie, vol. 62, no. 8, pp. 614–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Zhang, W. Wang, T. Liu et al., “Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy,” Biomaterials, vol. 33, no. 7, pp. 2187–2196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. X. H. Wang, Q. Tian, W. Wang, C. N. Zhang, P. Wang, and Z. Yuan, “In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin,” Journal of Materials Science-Materials in Medicine, vol. 23, no. 7, pp. 1663–1674, 2012. View at Publisher · View at Google Scholar
  9. Q. Tian, X. H. Wang, W. Wang, C. N. Zhang, P. Wang, and Z. Yuan, “Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid,” Nanomedicine-Nanotechnology Biology and Medicine, vol. 8, no. 6, pp. 870–879, 2012. View at Publisher · View at Google Scholar
  10. C. Zhang, Y. Wu, T. Liu et al., “Antitumor activity of drug loaded glycyrrhetinic acid modified alginate nanoparticles on mice bearing orthotopic liver tumor,” Journal of Controlled Release, vol. 152, pp. E111–E113, 2011. View at Publisher · View at Google Scholar
  11. Q. Tian, X. Wang, W. Wang, C. Zhang, Z. Yuan, and X. Chen, “Understanding the role of the C3-hydroxyl group in glycyrrhetinic acid on liver targeting,” Journal of Controlled Release, vol. 152, pp. E237–E239, 2011. View at Publisher · View at Google Scholar
  12. W. Huang, W. Wang, P. Wang et al., “Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier,” Journal of Materials Science Materials in Medicine, vol. 22, no. 4, pp. 853–863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Huang, P. Wang, W. Wang et al., “Preparation of glycyrrhetinic acid-modified PEG-PLGA nanoparticles and the affinity evaluation on hepatoma cells,” Chemical Journal of Chinese Universities, vol. 32, no. 2, pp. 416–420, 2011. View at Google Scholar · View at Scopus
  14. W. Huang, W. Wang, P. Wang et al., “Glycyrrhetinic acid-modified poly(ethylene glycol)-b-poly(γ-benzyl l-glutamate) micelles for liver targeting therapy,” Acta Biomaterialia, vol. 6, no. 10, pp. 3927–3935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Zhang, W. Wang, C. Wang et al., “Cytotoxicity of liver targeted drug-loaded alginate nanoparticles,” Science in China: Series B, vol. 52, no. 9, pp. 1382–1387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Tian, W. Wang, X. He et al., “Glycyrrhetinic acid-modified nanoparticles for drug delivery: preparation and characterization,” Chinese Science Bulletin, vol. 54, no. 18, pp. 3121–3126, 2009. View at Publisher · View at Google Scholar
  17. R.-T. Zha, X.-T. He, T. Du, and Z. Yuan, “Synthesis and characterization of chitosan nanoparticles modified by glycyrrhetinic acid as a liver targeting drug carrier,” Chemical Journal of Chinese Universities, vol. 28, no. 6, pp. 1098–1100, 2007. View at Google Scholar · View at Scopus
  18. Q. Tian, C.-N. Zhang, X.-H. Wang et al., “Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery,” Biomaterials, vol. 31, no. 17, pp. 4748–4756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Y. He, X. Zheng, X. H. Wu et al., “Development of glycyrrhetinic acid-modified stealth cationic liposomes for gene delivery,” International Journal of Pharmaceutics, vol. 397, no. 1-2, pp. 147–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Inoue, T. Mori, S. Shibata, and Y. Koshihara, “Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema,” British Journal of Pharmacology, vol. 96, no. 1, pp. 204–210, 1989. View at Google Scholar · View at Scopus
  21. S.-J. Um, M.-S. Park, S.-H. Park, H.-S. Han, Y.-J. Kwon, and H.-S. Sin, “Synthesis of new glycyrrhetinic acid (GA) derivatives and their effects on tyrosinase activity,” Bioorganic and Medicinal Chemistry, vol. 11, no. 24, pp. 5345–5352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Takahashi, H. Onishi, and Y. Machida, “Glycyrrhetic acid-loaded microparticles: liver-specific delivery and therapeutic potential against carbon tetrachloride-induced hepatitis,” Journal of Pharmacy and Pharmacology, vol. 56, no. 4, pp. 437–444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Puglia, C. Ostacolo, A. Sacchi, S. Laneri, and F. Bonina, “In-vitro and in-vivo evaluation of oligoethylene esters as dermal prodrugs of 18β-glycyrrhetic acid,” Journal of Pharmacy and Pharmacology, vol. 58, no. 3, pp. 311–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. He, Z. He, X. Zheng et al., “Synthesis, characterization and in vitro evaluation of self-assembled poly(ethylene glycol)-glycyrrhetinic acid conjugates,” Letters in Organic Chemistry, vol. 9, no. 3, pp. 202–210, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Tian, X. Wang, W. Wang, C. Zhang, Y. Liu, and Z. Yuan, “Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting,” International Journal of Pharmaceutics, vol. 400, no. 1-2, pp. 153–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Li, Y. Shao, X. Wang, S. Quan, Y. Zhang, and Z. Zhang, “Oligodeoxynucleotide acid loaded, NGR-peptide-conjugated polymeric liposomes: in vitro and in vivo evaluation,” Current Nanoscience, vol. 7, no. 5, pp. 797–806, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ramezani, B. Malaekeh-Nikouei, S. Malekzadeh, M. R. Baghayeripour, and M. Malaekeh-Nikouei, “The effect of lipopolymer structure on the transfection efficiency of hydrophobic polyethylenimine-based cationic nanoliposomes,” Current Nanoscience, vol. 8, no. 5, pp. 680–684, 2012. View at Google Scholar
  28. J. Li, Z. He, S. Yu et al., “Micelles based on methoxy poly(ethylene glycol)-cholesterol conjugate for controlled and targeted drug delivery of a poorly water soluble drug,” Journal of Biomedical Nanotechnology, vol. 8, no. 5, pp. 809–817, 2012. View at Google Scholar
  29. L. Cai, N. Qiu, X. Li et al., “A novel truncated basic fibroblast growth factor fragment-conjugated poly (ethylene glycol)-cholesterol amphiphilic polymeric drug delivery system for targeting to the FGFR-overexpressing tumor cells,” International Journal of Pharmaceutics, vol. 408, no. 1-2, pp. 173–182, 2011. View at Publisher · View at Google Scholar · View at Scopus