Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 931980, 6 pages
http://dx.doi.org/10.1155/2013/931980
Research Article

Donor-Like Surface Traps on Two-Dimensional Electron Gas and Current Collapse of AlGaN/GaN HEMTs

1Jiangsu Key Laboratory of ASIC Design, Nantong University, Nantong 226019, China
2School of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
3Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Received 27 July 2013; Accepted 12 August 2013

Academic Editors: W. Hu, S. Jit, and F. Yue

Copyright © 2013 Chen-hui Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tarakji, G. Simin, N. Ilinskaya et al., “Mechanism of radio-frequency current collapse in GaN-AlGaN field-effect transistors,” Applied Physics Letters, vol. 78, no. 15, pp. 2169–2171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Meneghesso, F. Rampazzo, P. Kordoš, G. Verzellesi, and E. Zanoni, “Current collapse and high-electric-field reliability of unpassivated GaN/AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 2932–2940, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. X.-D. Wang, W.-D. Hu, X.-S. Chen, and W. Lu, “The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs,” IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 1393–1401, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Keller, Y.-F. Wu, G. Parish et al., “Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 552–559, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Schöche, J. Shi, A. Boosalis et al., “Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures,” Applied Physics Letters, vol. 98, no. 9, Article ID 092103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Mitrofanov and M. Manfra, “Dynamics of trapped charge in GaN/AlGaN/GaN high electron mobility transistors grown by plasma-assisted molecular beam epitaxy,” Applied Physics Letters, vol. 84, no. 3, pp. 422–424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. D. Ye, B. Yang, K. K. Ng et al., “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Applied Physics Letters, vol. 86, no. 6, Article ID 063501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Kohn, I. Daumiller, M. Kunze et al., “Transient characteristics of GaN-based heterostructure field-effect transistors,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2, pp. 634–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. W. D. Hu, X. S. Chen, F. Yin, J. B. Zhang, and W. Lu, “Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors,” Journal of Applied Physics, vol. 105, no. 8, Article ID 084502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Wang, W. D. Hu, X. S. Chen, and W. Lu, “The role of ultrathin AlN barrier in the reduction in the hot electron and self-heating effects for GaN-based double-heterojunction high electron mobility transistors,” Journal of Applied Physics, vol. 108, no. 5, Article ID 054501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. W. D. Hu, X. S. Chen, Z. J. Quan et al., “Simulation and optimization of GaN-based metal-oxide-semiconductor high-electron-mobility-transistor using field-dependent drift velocity model,” Journal of Applied Physics, vol. 102, no. 3, Article ID 034502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Vetury, N. Q. Zhang, S. Keller, and U. K. Misha, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 560–566, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Meneghesso, G. Verzellesi, R. Pierobon et al., “Surface-related drain current dispersion effects in AlGaN-GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 51, no. 10, pp. 1554–1561, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Tirado, J. L. Sánchez-Rojas, and J. I. Izpura, “Trapping effects in the transient response of AlGaN/GaN HEMT devices,” IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 410–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Tirado, J. L. Sanchez-Rojas, and J. I. Izpura, “2D simulation of static surface states in AlGaN/GaN HEMT and GaN MESFET devices,” Semiconductor Science and Technology, vol. 20, no. 8, pp. 864–869, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. B. Klein, S. C. Binari, K. Ikossi-Anastasiou et al., “Investigation of traps producing current collapse in AlGaN/GaN high electron mobility transistors,” Electronics Letters, vol. 37, no. 10, pp. 661–662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Braga, R. Mickevicius, R. Gaska, M. S. Shur, M. Asif Khan, and G. Simin, “Simulation of gate lag and current collapse in gallium nitride field-effect transistors,” Applied Physics Letters, vol. 85, no. 20, pp. 4780–4782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Nguyen, N. X. Nguyen, and D. E. Grider, “Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies,” Electronics Letters, vol. 35, no. 16, pp. 1380–1382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Hu, A. Koudymov, G. Simin et al., “Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors,” Applied Physics Letters, vol. 79, no. 17, pp. 2832–2834, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Simin, A. Koudymov, A. Tarakji et al., “Induced strain mechanism of current collapse in AlGaN/GaN heterostructure field-effect transistors,” Applied Physics Letters, vol. 79, no. 16, pp. 2651–2653, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. J. Miller, E. T. Yu, C. Poblenz, C. Elsass, and J. S. Speck, “Direct measurement of the polarization charge in AlGaN/GaN heterostructures using capacitance-voltage carrier profiling,” Applied Physics Letters, vol. 80, no. 19, pp. 3551–3553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-P. Ao, D. Kikuta, N. Kubota, Y. Naoi, and Y. Ohno, “Copper gate AlGaN/GaN HEMT with low gate leakage current,” IEEE Electron Device Letters, vol. 24, no. 8, pp. 500–503, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Hu, J. Deng, N. Pala et al., “AlGaN/GaN heterostructure field-effect transistors on single-crystal bulk AlN,” Applied Physics Letters, vol. 82, no. 8, pp. 1299–1301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. W. D. Hu, X. S. Chen, Z. J. Quan, C. S. Xia, W. Lu, and P. D. Ye, “Self-heating simulation of GaN-based metal-oxide-semiconductor high-electron-mobility transistors including hot electron and quantum effects,” Journal of Applied Physics, vol. 100, no. 7, Article ID 074501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. V. O. Turin and A. A. Balandin, “Performance degradation of GaN field-effect transistors due to thermal boundary resistance at GaN/substrate interface,” Electronics Letters, vol. 40, no. 1, pp. 81–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Brannick, N. A. Zakhleniuk, B. K. Ridley, J. R. Shealy, W. J. Schaff, and L. F. Eastman, “Influence of field plate on the transient operation of the AlGaN/GaN HEMT,” IEEE Electron Device Letters, vol. 30, no. 5, pp. 436–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Daumiller, D. Theron, C. Gaquière et al., “Current instabilities in GaN-based devices,” IEEE Electron Device Letters, vol. 22, no. 2, pp. 62–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Wang, W. D. Hu, X. S. Chen, and W. Lu, “Analysis of interface scattering in AlGaN/GaN/InGaN/GaN double-heterojunction high-electron-mobility transistors,” Journal of Electronic Materials, vol. 41, no. 8, pp. 2130–2138, 2012. View at Publisher · View at Google Scholar
  29. Z. Y. Fan, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “AlGaN/GaN/AlN quantum-well field-effect transistors with highly resistive AlN epilayers,” Applied Physics Letters, vol. 88, no. 7, Article ID 073513, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. W. D. Hu, X. S. Chen, Z. J. Quan, C. S. Xia, W. Lu, and H. J. Yuan, “Demonstration and dynamic analysis of trapping of hot electrons at gate edge model for current collapse and gate lag in GaN-based high-electron-mobility transistor including self-heating effect,” Applied Physics Letters, vol. 89, no. 24, Article ID 243501, 2006. View at Publisher · View at Google Scholar · View at Scopus