Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 940153, 8 pages
http://dx.doi.org/10.1155/2013/940153
Research Article

Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes

1School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2School of Science, Wuhan University of Science and Technology, Wuhan 430081, China

Received 13 August 2013; Accepted 2 September 2013

Academic Editors: C.-C. Chang and J. Xu

Copyright © 2013 Haihua Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. LaCroix and A. F. Diaz, “Electrolyte effects on the switching reaction of polyaniline,” Journal of the Electrochemical Society, vol. 135, no. 6, pp. 1457–1463, 1988. View at Google Scholar · View at Scopus
  2. J. L. Camalet, J. C. Lacroix, S. Aeiyach, K. Chane-Ching, and P. C. Lacaze, “Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium,” Synthetic Metals, vol. 93, no. 2, pp. 133–142, 1998. View at Google Scholar · View at Scopus
  3. C. H. Yang and T. C. Wen, “Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coated titanium electrode,” Journal of Applied Electrochemistry, vol. 24, no. 2, pp. 166–178, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. G. Wang, H. Q. Li, and Y. Y. Xia, “Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance,” Advanced Materials, vol. 18, no. 19, pp. 2619–2623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. Liao, K. H. Hsieh, Y. C. Chern, and K. S. Ho, “Interpenetrating polymer networks of polyaniline and maleimide-terminated polyurethanes,” Synthetic Metals, vol. 87, no. 1, pp. 61–67, 1997. View at Google Scholar · View at Scopus
  6. M. A. de Paoli, G. Casalbore-Miceli, E. M. Girotto, and W. A. Gazotti, “All polymeric solid state electrochromic devices,” Electrochimica Acta, vol. 44, no. 18, pp. 2983–2991, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, and R. E. F. Einerhand, “Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices,” Synthetic Metals, vol. 87, no. 1, pp. 53–59, 1997. View at Google Scholar · View at Scopus
  8. C. Wu, X. Y. Wang, B. W. Ju, X. Y. Zhang, L. L. Jiang, and H. Wu, “Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline.,” International Journal of Hydrogen Energy, vol. 37, pp. 14365–14372, 2012. View at Publisher · View at Google Scholar
  9. A. K. Shukla, S. Sampath, and K. Vijayamohanan, “Electrochemical supercapacitors: energy storage beyond batteries,” Current Science, vol. 79, no. 12, pp. 1656–1661, 2000. View at Google Scholar · View at Scopus
  10. G. A. Snook, P. Kao, and A. S. Best, “Conducting-polymer-based supercapacitor devices and electrodes,” Journal of Power Sources, vol. 196, no. 1, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Zhou, H. Chen, S. Luo, G. Lu, W. Wei, and Y. Kuang, “The effect of the polyaniline morphology on the performance of polyaniline supercapacitors,” Journal of Solid State Electrochemistry, vol. 9, no. 8, pp. 574–580, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Liu, M. Zhou, L. Z. Fan, P. Li, and X. Qu, “Porous polyaniline exhibits highly enhanced electrochemical capacitance performance,” Electrochimica Acta, vol. 55, no. 20, pp. 5819–5822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Sumboja, X. Wang, J. Yan, and P. S. Lee, “Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode,” Electrochimica Acta, vol. 65, pp. 190–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Fraoua, M. Delamar, and C. P. Andrieux, “Study of pH effect on the relaxation phenomenon of polyaniline by electrochemistry and XPS,” Journal of Electroanalytical Chemistry, vol. 418, no. 1-2, pp. 109–113, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. C. M. A. Brett and C. Thiemann, “Conducting polymers from aminobenzoic acids and aminobenzenesulphonic acids: influence of pH on electrochemical behaviour,” Journal of Electroanalytical Chemistry, vol. 538-539, pp. 215–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Benyaich, C. Deslouis, T. El Moustafid, M. M. Musiani, and B. Tribollet, “Electrochemical properties of pani films for different counter-ions in acidic pH analysed by impedance techniques,” Electrochimica Acta, vol. 41, no. 11-12, pp. 1781–1785, 1996. View at Google Scholar · View at Scopus
  17. A. Q. Zhang, C. Q. Cui, and J. Y. Lee, “Electrochemical degradation of polyaniline in HClO4 and H2SO4,” Synthetic Metals, vol. 72, no. 3, pp. 217–223, 1995. View at Google Scholar · View at Scopus
  18. H. Mi, X. Zhang, S. Yang, X. Ye, and J. Luo, “Polyaniline nanofibers as the electrode material for supercapacitors,” Materials Chemistry and Physics, vol. 112, no. 1, pp. 127–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Park, Handbook of Organic Conductive Molecules and Polymers, Wiley, New York, NY, USA, 1997.
  20. P. M. McManus, R. J. Cushman, and S. C. Yang, “Influence of oxidation and protonation on the electrical conductivity of polyaniline,” Journal of Physical Chemistry, vol. 91, no. 3, pp. 744–747, 1987. View at Google Scholar · View at Scopus
  21. L. Duic and Z. Mandci, “Counter-ion and pH effect on the electrochemical synthesis of polyaniline,” Journal of Electroanalytical Chemistry, vol. 335, no. 1-2, pp. 207–221, 1992. View at Publisher · View at Google Scholar
  22. S. L. de Albuquerque Maranhão and R. M. Torresi, “Anion and solvent exchange as a function of the redox states in polyaniline films,” Journal of the Electrochemical Society, vol. 146, no. 11, pp. 4179–4182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. V. E. Kazarinov, V. N. Andreev, M. A. Spytsin, and A. V. Shlepakov, “Role of anions in the electrochemical transformation processes of polyaniline,” Electrochimica Acta, vol. 35, no. 5, pp. 899–904, 1990. View at Google Scholar · View at Scopus
  24. D. D. Borole, U. R. Kapadi, P. P. Mahulikar, and D. G. Hundiwale, “Synthesis and characterization of poly (aniline-co-o-anisidine-co-o-toluidine) thin films in inorganic and organic supporting electrolytes,” Journal of Materials Science, vol. 41, no. 7, pp. 1983–1990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. X. F. Wang, D. B. Ruan, D. Z. Wang, and J. Liang, “Hybrid electrochemical supercapacitors based on polyaniline and activated carbon electrodes,” Acta Physico-Chimica Sinica, vol. 21, no. 3, pp. 261–266, 2005. View at Google Scholar · View at Scopus
  26. J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran, and P. S. Vijayanand, “Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods,” Archives of Applied Science Research, vol. 6, pp. 147–153, 2011. View at Google Scholar
  27. Y. He, “A novel emulsion route to sub-micrometer polyaniline/nano-ZnO composite fibers,” Applied Surface Science, vol. 249, no. 1–4, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Chang, X. L. Cao, H. Zeng, and L. Zhang, “Enhancement of the ultraviolet emission of ZnO nanostructures by polyaniline modification,” Chemical Physics Letters, vol. 446, no. 4–6, pp. 370–373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, and S. Wang, “Theoretical and experimental specific capacitance of polyaniline in sulfuric acid,” Journal of Power Sources, vol. 190, no. 2, pp. 578–586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Q. Cheng, The Chemical Power Source, Chemical industry Press, Beijing, China, 2008.