Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013 (2013), Article ID 947879, 10 pages
http://dx.doi.org/10.1155/2013/947879
Clinical Study

Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

1Behavioral Psychopharmacology Research Lab, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
2McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
3Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
4Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
5Charles River Analytics, Inc., 625 Mt. Auburn Street, Cambridge, MA 02138, USA
6Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
7Sleep Health Centers, 1505 Commonwealth Avenue, Brighton, MA 02135, USA
8Private Practice, 1266 Main St., West Concord, MA 01742, USA
9Department of Psychiatry, The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA

Received 20 May 2013; Accepted 18 July 2013

Academic Editors: E. Lanuza, A. K. Moschovakis, and A. Valero-Cabre

Copyright © 2013 George H. Trksak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. T. Morgan and R. T. Malison, “Cocaine and sleep: early abstinence,” TheScientificWorldJournal, vol. 7, no. 2, pp. 223–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-E. Johanson, T. Roehrs, K. Schuh, and L. Warbasse, “The effects of cocaine on mood and sleep in cocaine-dependent males,” Experimental and Clinical Psychopharmacology, vol. 7, no. 4, pp. 338–346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. E. F. Pace-Schott, R. Stickgold, A. Muzur et al., “Sleep quality deteriorates over a binge—abstinence cycle in chronic smoked cocaine users,” Psychopharmacology, vol. 179, no. 4, pp. 873–883, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. E. Lukas, C. M. Dorsey, N. K. Mello et al., “Reversal of sleep disturbances in cocaine- and heroin-dependent men during chronic buprenorphine treatment,” Experimental and Clinical Psychopharmacology, vol. 4, no. 4, pp. 413–420, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. E. F. Pace-Schott, P. T. Morgan, R. T. Malison et al., “Cocaine users differ from normals on cognitive tasks which show poorer performance during drug abstinence,” American Journal of Drug and Alcohol Abuse, vol. 34, no. 1, pp. 109–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. K. L. Kjome, S. D. Lane, J. M. Schmitz et al., “Relationship between impulsivity and decision making in cocaine dependence,” Psychiatry Research, vol. 178, no. 2, pp. 299–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. T. Morgan, E. F. Pace-Schott, Z. H. Sahul, V. Coric, R. Stickgold, and R. T. Malison, “Sleep, sleep-dependent procedural learning and vigilance in chronic cocaine users: evidence for occult insomnia,” Drug and Alcohol Dependence, vol. 82, no. 3, pp. 238–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. B. S. McEwen, “Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load,” Metabolism, vol. 55, no. 2, pp. S20–S23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. T. Scharf, N. Naidoo, J. E. Zimmerman, and A. I. Pack, “The energy hypothesis of sleep revisited,” Progress in Neurobiology, vol. 86, no. 3, pp. 264–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Brown, “Brain glycogen re-awakened,” Journal of Neurochemistry, vol. 89, no. 3, pp. 537–552, 2004. View at Google Scholar · View at Scopus
  11. J.-M. Petit, I. Tobler, I. Allaman, A. A. Borbély, and P. J. Magistretti, “Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism,” European Journal of Neuroscience, vol. 16, no. 6, pp. 1163–1167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-M. Petit, I. Tobler, C. Kopp, F. Morgenthaler, A. A. Borbély, and P. J. Magistretti, “Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration,” Sleep, vol. 33, no. 7, pp. 901–908, 2010. View at Google Scholar · View at Scopus
  13. P. Franken, P. Gip, G. Hagiwara, N. F. Ruby, and H. C. Heller, “Changes in brain glycogen after sleep deprivation vary with genotype,” American Journal of Physiology, vol. 285, no. 2, pp. R413–R419, 2003. View at Google Scholar · View at Scopus
  14. P. Gip, G. Hagiwara, R. M. Sapolsky, V. H. Cao, H. C. Heller, and N. F. Ruby, “Glucocorticoids influence brain glycogen levels during sleep deprivation,” American Journal of Physiology, vol. 286, no. 6, pp. R1057–R1062, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Franken, P. Gip, G. Hagiwara, N. F. Ruby, and H. C. Heller, “Glycogen content in the cerebral cortex increases with sleep loss in C57BL/6J mice,” Neuroscience Letters, vol. 402, no. 1-2, pp. 176–179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Porkka-Heiskanen and A. V. Kalinchuk, “Adenosine, energy metabolism and sleep homeostasis,” Sleep Medicine Reviews, vol. 15, no. 2, pp. 123–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Murashita, N. Yamada, T. Kato, M. Tazaki, and N. Kato, “Effects of sleep deprivation: the phosphorus metabolism in the human brain measured by 31P-magnetic resonance spectroscopy,” Psychiatry and Clinical Neurosciences, vol. 53, no. 2, pp. 199–201, 1999. View at Google Scholar · View at Scopus
  18. C. M. Dorsey, S. E. Lukas, C. M. Moore et al., “Phosphorous31 magnetic resonance spectroscopy after total sleep deprivation in healthy adult men,” Sleep, vol. 26, no. 5, pp. 573–577, 2003. View at Google Scholar · View at Scopus
  19. G. H. Trksak, J. E. Jensen, D. T. Plante et al., “Effects of sleep deprivation on sleep homeostasis and restoration during methadone-maintenance: a [31]P MRS brain imaging study,” Drug and Alcohol Dependence, vol. 106, no. 2-3, pp. 79–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. First, R. Spitzer, M. Gibbon, and J. Williams, Structured Clinical Interview for DSM-IV Axis I Disorders (SCID), New York State Psychiatric Institute, Biometrics Research, New York, NY, USA, 1997.
  21. A. Rechtschaffen and A. Kales, A Manual of Standardized Terminology Techniques and Scoring System for Sleep Stages of Human Subjects, University of California at Los Angeles, Brain Information Service/Brain Research Institute, Los Angeles, Calif, USA, 1968.
  22. C. K. Conners, Conners' Continuous Performance Test Computer Program Users Manual, Multi-Health Systems, Toronto, Canada, 1994.
  23. M. D. Lezak, D. B. Howieson, D. W. Loring, H. J. Hannay, and J. S. Fischer, Neuropsychological Assessment, Oxford University Press, New York, NY, USA, 4th edition, 2004.
  24. D. McNair, M. Lorr, and L. Droppleman, Profile of Mood States, Educational and Industrial Testing Service, San Diego, Calif, USA, 1971.
  25. E. Hoddes, W. Dement, and V. D. Zarcone, “The history and use of the Stanford sleepiness scale,” Psychophysiology, vol. 9, pp. 150–152, 1972. View at Google Scholar
  26. S. L. Ponder and D. B. Twieg, “A novel sampling method for 31P spectroscopic imaging with improved sensitivity, resolution, and sidelobe suppression,” Journal of Magnetic Resonance, Series B, vol. 104, no. 1, pp. 85–88, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Potwarka, D. J. Drost, and P. C. Williamson, “Quantifying 1H decoupled in vivo 31P brain spectra,” NMR in Biomedicine, vol. 12, no. 1, pp. 8–14, 1999. View at Google Scholar
  28. J. E. Jensen, D. J. Drost, R. S. Menon, and P. C. Williamson, “In vivo brain31P-MRS: measuring the phospholipid resonances at 4 Tesla from small voxels,” NMR in Biomedicine, vol. 15, no. 5, pp. 338–347, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Jovanovski, S. Erb, and K. K. Zakzanis, “Neurocognitive deficits in cocaine users: a quantitative review of the evidence,” Journal of Clinical and Experimental Neuropsychology, vol. 27, no. 2, pp. 189–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. B. K. Bracken, G. H. Trksak, D. M. Penetar et al., “Response inhibition and psychomotor speed during methadone maintenance: impact of treatment duration, dose, and sleep deprivation,” Drug and Alcohol Dependence, vol. 125, no. 1-2, pp. 132–139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. R. K. Kalapatapu, N. P. Vadhan, E. Rubin et al., “A pilot study of neurocognitive function in older and younger cocaine abusers and controls,” American Journal on Addictions, vol. 20, no. 3, pp. 228–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. P. T. Morgan and R. T. Malison, “Cocaine and sleep: early abstinence,” TheScientificWorldJournal, vol. 7, no. 2, pp. 223–230, 2007. View at Publisher · View at Google Scholar · View at Scopus